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a b s t r a c t

This paper studies the multiple runway Aircraft Landing Problem. The aim is to schedule arriving aircraft to

available runways at the airport. Landing times lie within predefined time windows and safety separation

constraints between two successive landings must be satisfied. We propose a new approach for solving the

problem. The method is based on an approximation of the separation time matrix and on time discretization.

The separation matrix is approximated by a rank two matrix. This provides lower bounds or upper bounds

depending on the choice of the approximating matrix. These bounds are used in a constraint generation

algorithm to, exactly or heuristically, solve the problem. Computational tests, performed on publicly available

problems involving up to 500 aircraft, show the efficiency of the approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper addresses the problem of scheduling aircraft landings

at an airport. Given a set of planes, the problem is one of assigning

a runway and a landing time for each plane. Each plane has to land

within its predefined time window and safety separation distances

have to be maintained between any pair of planes. This problem,

referenced in the literature as the Aircraft Landing Problem (ALP),

has been extensively studied. Beasley, Krishnamoorthy, Sharaiha, and

Abramson (2000) present a mixed integer zero-one formulation of the

problem. Each plane has a target landing time within its time win-

dow. A cost is accounted when a plane lands after or before its target

time. The objective is to minimize the total cost of deviation from

the target times. The problem is solved optimally with a linear pro-

gramming based tree search algorithm. A heuristic method is also

proposed. Using a similar model, Ernst, Krishnamoorthy, and Storer

(1999) propose a different heuristic approach. When the binary vari-

ables are fixed the remaining continuous linear problem is solved by

a specialized simplex method which evaluates the landing times very

quickly. The method is used in a space search heuristic as well as a

branch and bound algorithm. Fahle, Feldmann, Gotz, Grothklags, and

Monien (2003) present a comparison of several models and heuris-

tics. They study a MIP (mixed integer program) and an integer linear

program using time discretization introduced in Beasley et al. (2000).

They also compare two heuristic algorithms, Hill Climbing and Simu-

lated Annealing methods. A SAT (Satisfiability Problem) formulation

is proposed to decide if there exists a valid solution for the problem.
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In Hansen’s (2004) paper, four genetic algorithms are tested for the

problem. The author introduces runway dependent time windows.

Computational results are given for small instances. Beasley, Sonan-

der, and Havelock (2001) use a population heuristic to solve a prob-

lem instance based on observations during a busy period at London

Heathrow airport. Diallo, Ndiaye, and Seck (2012) solve the prob-

lem for the single runway case. Experiments based on real datasets

of Léopold Sédar Senghor Airport of Dakar are presented. Pinol and

Beasley (2006) consider extensions of the previous model given in

Beasley et al. (2000). Time windows and separation distance between

two successive aircraft are assumed to be runway dependent. These

new criteria involve respectively linear and quadratic constraints.

Next, two population heuristics are applied to the problem. In order

to consider airline preferences for individual flights, a new objective

function is introduced by Soomer and Franx (2008). Equity considera-

tions lead to a convex piecewise linear function which has to be min-

imized. The problem is solved by a local search heuristic. Artiouchine,

Baptiste, and Durr (2008) consider the case where more than one time

window is assigned to each plane. These time windows modelize the

mechanisms as vector spaces and holding patterns, used by air con-

trollers to delay planes. The separation criteria are not a constraint

but the objective is to maximize the minimum elapsed time between

any two consecutive landings. The authors study the complexity of the

problem and identify polynomially solvable cases. For solving general

problems, a branch and cut framework is used. Bianco, Dell’Olmo, and

Giordani (2006) propose a job-shop scheduling model with sequence

dependent processing times. Jobs modelize planes. The paths of the

planes in the terminal area are decomposed into machines like run-

ways. The processing times take into account the separation distances

between planes. The model is quite general and is suitable for arrivals

and departures. Several objectives are considered as average delay
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minimization, minimization of maximum delay and throughput (ca-

pacity) maximization. The problem is solved by a heuristic method

based on a fast local search. Bencheikh, Boukachour, El Hilali Alaoui,

and El Khoukhi (2009) modelize the landing problem as a job-shop

scheduling problem. The problem is solved by a hybrid method com-

bining genetic algorithms with an ant colony optimization algorithm.

D’Ariano, Pistelli, and Pacciarelli (2012) consider take-off and landing

operations at a busy terminal area. Aircraft timing and routing issue is

modelized as a job-shop scheduling problem and is solved by a trun-

cated branch and bound algorithm for fixed routes. Aircraft rerouting

is performed by a tabu search in order to improve the solution. The

overall algorithm is tested on practical instances from Rome Fiumi-

cino airport. Diaz and Mena (2005) and van Leeuwen, Hesselink, and

Rohling (2002) have used constraint programming. These methods

are well suited for small instances. However, the quality of the pro-

vided solutions is not as good as for larger instances. The dynamic

case of ALP is considered by Beasley, Krishnamoorthy, Sharaiha, and

Abramson (2004). Decisions must be taken in a dynamic fashion as

time passes. Each new decision must take into account the previous

decision which was made. The problem is solved using two types of

heuristics.

In this paper, we propose a new approach for solving the Aircraft

Landing Problem. The method is based on an approximation of the

separation time matrix and on time discretization. The separation

time matrix is approximated by a rank two matrix.

In the ideal case, the separation time matrix is a rank two ma-

trix. In this case, the problem is stated as a 0-1 linear program. The

LP relaxation of this model is very tight. Discretization time induces

an important number of variables but this drawback is counterbal-

anced by very good LP relaxation. The discretization methods pro-

posed in Beasley et al. (2000) and Fahle et al. (2003) do not have this

property.

When the separation time matrix is not a rank 2 matrix, an ap-

proximation is done. This provides lower bounds or upper bounds

depending on the choice of the approximating matrix. These bounds

are used in a constraint generation algorithm to, optimally or heuris-

tically, solve the problem.

In Section 2, we recall the classical formulation of the problem.

In Section 3, we show that the problem can be discretized. Next, in

Section 4, we give the model based on time discretization and on a

rank two separation time matrix. In Section 5, we present the approx-

imation method of the separation time matrix, the exact algorithm

and the heuristic method based on constraint generation. Computa-

tion results are reported in Section 6 and concluding remarks follow

in Section 7.

2. Classical modelization

Each aircraft entering within the radar range at its destination air-

port, receives instructions from air traffic control. A landing time and

a runway on which to land are assigned to the plane. The landing time

must be between an earliest landing time and a latest landing time.

The earliest landing time corresponds to the time at which the air-

craft can land if it flies at its fastest speed. To delay the landing time,

the speed of the aircraft can be decreased or the flight plan can be

lengthened by circling. The latest time corresponds to the maximum

landing time achievable by these delaying mechanisms. Within this

time window, there is a target time which corresponds to the time at

which aircraft can land if it flies at its cruise speed. The target time

is the preferred landing time. Safety distances between pair of suc-

cessive planes must be respected. Separation distances are converted

into separation times using a fixed landing speed depending on the

aircraft type. Then, there must be a minimal lapse of time between the

landing of a plane and the landing of any successive plane. Separation

time holds between a pair of planes landing on the same runway or

on different runways.

We give a modelization of the Aircraft Landing Problem which is

based on the one presented in Beasley et al. (2000) and Pinol and

Beasley (2006).

The data are the following:

• P set of planes, R set of runways available for landing
• Ei the earliest landing time for plane i, ∀i ∈ P
• Ti the target (preferred) landing time for plane i, ∀i ∈ P
• Li the latest landing time for plane i, ∀i ∈ P
• Sij ≥ 0 the minimum separation time between planes i and j where

i lands before j on the same runway
• sij ≥ 0 the minimum separation time between planes i and j where

i lands before j on a different runway

Sij is called the longitudinal separation time between leading aircraft

i and trailing aircraft j. sij is the diagonal separation time (cf. Bianco

et al., 2006). We assume Sij > sij.

The decision variables are the following:

• δ1
ij

∀i, j ∈ P (i �= j) binary variable such that δ1
ij

= 1 if and only if

aircraft i lands before aircraft j and on the same runway.
• δ2

ij
∀i, j ∈ P (i �= j) binary variable such that δ2

ij
= 1 if and only if

aircraft i lands before aircraft j and on a different runway.
• zij ∀i, j ∈ P (i < j) binary variable such that zij = 1 if and only if

aircraft i and j land on the same runway.
• yir ∀i ∈ P, r ∈ R binary variable such that yir = 1 if and only if air-

craft i lands on runway r.
• xi ≥ 0 the scheduled landing time for plane i, ∀i ∈ P.

The constraints are the following:

(PB)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xj ≥ xi + Sij + (1 − δ1
ij
)(−Sij − Li + Ej), ∀i �= j ∈ P (1)

xj ≥ xi + sij + (1 − δ2
ij
)(−sij − Li + Ej), ∀i �= j ∈ P (2)

δ1
ij

+ δ1
ji

= zij, ∀i < j ∈ P (3)

δ2
ij

+ δ2
ji

= 1 − zij, ∀i < j ∈ P (4)

zij ≥ yir + yjr − 1, ∀i < j ∈ P ∀r ∈ R (5)∑
r∈R yir = 1, ∀i ∈ P (6)

Ei ≤ xi ≤ Li, ∀i ∈ P (7)

δ1
ij
, δ2

ij
∈ {0, 1}, ∀i �= j ∈ P

zij ∈ {0, 1}, ∀i < j ∈ P, yir ∈ {0, 1}, ∀i ∈ P ∀r ∈ R

We give a slightly different formulation of the one given in Beasley

et al. (2000) and Pinol and Beasley (2006). Constraints (1) are related

to planes landing on the same runway, while constraints (2) are re-

lated to planes landing on different runways. They ensure minimum

separation time in each case if δ1
ij

= 1 or δ2
ij

= 1. If δ1
ij

= 0 then (1)

becomes xj ≥ xi − Li + Ej which is true by (7). The same holds for (2).

Hence for δ1
ij

= 0 and δ2
ij

= 0, these constraints are inactive. In Beasley

et al. (2000) and Pinol and Beasley (2006), conditions (1), (2) are ag-

gregated in a single set of constraints.

If planes i and j (i < j) land on the same runway, i.e. zij = 1, con-

straint (3) becomes δ1
ij

+ δ1
ji

= 1 meaning that either aircraft i or j must

land first. If planes i and j land on different runways, i.e. zij = 0, then

δ1
ij

+ δ1
ji

= 0 and constraint (1) is inactive.

Constraints (4) and (2), relative to planes landing on different run-

ways, are linked in the same manner.

If yir = yjr = 1, i.e. planes i and j land on the same runway r, then

constraint (5) ensures that zij = 1. Otherwise zij will be either equal

to 0 or 1. The value zij = 0 will activate constraint (2) which is less

constraining than (1) since Sij > sij, and zero value will be preferred

in an optimization problem.

Constraint (6) ensures that each plane lands on exactly one

runway.

Constraint (7) ensures that each plane lands within its time

window.
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