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a b s t r a c t

This paper presents an overview of methods for the analysis of data structured in blocks of variables or in
groups of individuals. More specifically, regularized generalized canonical correlation analysis (RGCCA),
which is a unifying approach for multiblock data analysis, is extended to be also a unifying tool for mul-
tigroup data analysis. The versatility and usefulness of our approach is illustrated on two real datasets.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider a data matrix X structured in groups
(partition of rows) or in blocks (partition of columns). Rows of X
are related to individuals and columns to variables. Multiblock data
analysis concerns the analysis of several sets of variables (blocks)
observed on the same set of individuals. Multigroup data analysis
concerns the analysis of one set of variables observed on several
groups of individuals. Note that there is no established consensus
in the literature on the use of the terms ‘‘multiblock’’ and ‘‘multi-
group’’. Therefore these two terms are clearly defined in this paper.

In the multiblock framework, a column partition
X = [X1, . . ., Xj, . . ., XJ] is considered. In this case, each n � pj data ma-
trix Xj is called a block and represents a set of pj variables observed
on n individuals. The number and the nature of the variables usually
differ from one block to another but the individuals must be the
same across blocks. The main aim is to investigate the relationships
between blocks. The data might be preprocessed in order to ensure
comparability between variables and blocks. To make variables
comparable, standardization is applied (zero mean and unit vari-
ance). To make blocks comparable, a possible strategy is to divide
each block by

ffiffiffiffi
pj

p
(Wold, Hellberg, Lundstedt, Sjostrom, & Wold,

1987). This two-step procedure leads to Trace Xt
j Xj

� �
¼ n for each

block.

In the multigroup framework, a row partition
X ¼ Xt

1; . . . ;Xt
i ; . . . ;Xt

I

� �t
is considered. In this framework, the same

set of variables is observed on different groups of individuals. Each
ni � p data matrix Xi is called a group. The number of individuals of
each group can differ from one group to another. The main aim is to
investigate the relationships among variables within the various
groups. Following the proposal of Kiers and Ten Berge (1994) vari-
ables are centered and normalized (i.e. set to unit norm) within each
group. This preprocessing leads to Trace Xt

i Xi
� �

¼ p for each group.
Many methods exist for multiblock and multigroup data

analysis.
Two families of methods have come to the fore in the field of

multiblock data analysis. These methods rely on correlation-based
or covariance-based criteria. Canonical correlation analysis
(Hotelling, 1936) is the seminal paper for the first family and
Tucker’s inter-battery factor analysis (Tucker, 1958) for the second
one. These two methods have been extended to more than two
blocks in many ways:

(1) Main contributions for generalized canonical correlation
analysis (GCCA) are found in Horst (1961), Carroll (1968a),
Kettenring (1971), Wold (1982, 1985) and Hanafi (2007).

(2) Main contributions for extending Tucker’s method to more
than two blocks come from Carroll (1968b), Chessel and
Hanafi (1996), Hanafi and Kiers (2006), Hanafi, Kohler, and
Qannari (2010, 2011), Hanafi, Mazerolles, Dufour, and
Qannari (2006), Krämer (2007), Smilde, Westerhuis, and de
Jong (2003), Ten Berge (1988), Van de Geer (1984), Westerhuis,
Kourti, and MacGregor (1998), Wold (1982, 1985).
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(3) Carroll (1968b) proposed the ‘‘mixed’’ correlation and
covariance criterion. van den Wollenberg (1977) combined
correlation and variance for the two-block situation (redun-
dancy analysis). This method is extended to a multiblock
situation in this paper.

Regularized generalized canonical correlation analysis (Tenen-
haus & Tenenhaus, 2011) includes many of these references as
particular cases.

For multigroup data analysis, we may distinguish three families
of methods:

(1) Several methods combine the covariance matrices Si or the
correlation matrices Ri related to the various groups.

In a seminal paper, Levin (1966), considering the problem of
simultaneous factor analysis, proposed the diagonalization of
R ¼ ð1=IÞ

PI
i¼1Ri. The acronym SUMPCAc for the Levin method

was proposed by Kiers (1991). Kiers and Ten Berge (1994) pro-
posed several simultaneous component analysis methods (see par-
agraph 3 below): one of them (SCA-P) leads also to the
diagonalization of R. Krzanowski (1984) proposed to carry out a
multigroup PCA (MGPCA) by diagonalizing either T ¼

PI
i¼1Si or

the within group covariance matrix S ¼
PI

i¼1ðni=nÞSi.
Krzanowski (1979) proposed to use an approach similar to

Carroll’s GCCA (correlation criterion) for comparing group
correlation matrices R1, . . ., RI. Since GCCA on these matrices yields
a trivial solution, Krzanowski replaced each matrix Ri by its k first
eigenvectors and then applied GCCA on the obtained matrices.

Flury (1984) proposed a method called common principal com-
ponent analysis (CPC) for I groups by supposing a special structure
on the covariance matrices R1, . . ., RI defined at the population level.
In CPC, the I covariance matrices have the same eigenvectors but the
eigenvalues are specific to each group: Ri = AKiAt where A is orthog-
onal and Ki diagonal. Flury (1987) also proposed a partial common
principal component analysis (PCPC) where only q eigenvectors of
Ri are common to all populations. Flury’s approach is based on nor-
mal-theory maximum likelihood and a complicated iterative algo-
rithm is required. Two alternative algorithms have been proposed:
(1) Krzanowski (1984) showed empirically that MGPCA and PCPC
give very close results; (2) a sequential least squares solution to
PCPC can be obtained by using the CCSWA algorithm (Common
components and specific weight analysis) described in Hanafi
et al. (2006). It is also worth mentioning that CCSWA and HPCA
(Hierarchical principal component analysis described in Westerhuis
et al. (1998)) are two equivalent methods (Hanafi et al., 2010).

(2) It is always possible to use a multiblock method on multi-
group data by considering the transpose of each group. Eslami,
Qannari, Kohler, and Bougeard (2013a) proposed to use an ap-
proach similar to Carroll’s GCCA (correlation and covariance crite-
ria) on the transpose groups Xt

1; . . . ;Xt
I . This approach has later

been extended to a multiblock/multigroup situation in Eslami,
Qannari, Kohler, and Bougeard (2013b).

(3) Kiers and Ten Berge (1989, 1994) and later Timmerman and
Kiers (2003) proposed a generalization of PCA to a multigroup sit-
uation under the generic name of Simultaneous Component Anal-
ysis (SCA). Each data group Xi of dimension ni � p is modeled by a
lower rank ni � p matrix bXi ¼ XiWiP

t
i where Wi is a p � q (q < p)

weight matrix and Pi a p � q pattern matrix. A factor matrix
Fi = XiWi and a loading (or structure) matrix Li = RiWi are also intro-
duced. PCA and SCA methods are about minimizingPI

i¼1 Xi � XiWiP
t
i

		 		2
subject to specific constraints on the weight/

pattern/structure/factor matrices which are summarized in Table 1.
The reconstructed matrix bXi ¼ XiWiP

t
i is invariant up to an

orthogonal (rotation) matrix A: XiWiP
t
i ¼ XiWiA

tAPt
i . This invari-

ance can be used to improve interpretation. Various rotation meth-
ods are described in Niesing (1997). Moreover, Niesing shows in a
comparative study that SCA-P gives the best practical results.

De Roover, Ceulemans, and Timmerman (2012), De Roover,
Ceulemans, Timmerman, and Onghena (2013) and De Roover,
Timmerman, Van Mechelen, and Ceulemans (2013) have devel-
oped a clusterwise approach to SCA-P, SCA-PF2, SCA-IND and
SCA-ECP for tracing structural differences and similarities between
different groups of individuals.

Finally, Van Deun, Smilde, van der Werf, Kiers, and Van Meche-
len (2009) proposed a simultaneous component analysis frame-
work for multiblock and multigroup data analysis.

In this paper, a modified version of RGCCA, which can be ap-
plied to multiblock and multigroup data, is described. The acronym
RGCCA will be kept for this more general method. This paper is
organized as follows: the general optimization problem for both
multiblock and multigroup data analysis is presented in Section 2.
A monotonically convergent algorithm is presented in Section 3.
An overview of applications of RGCCA for multiblock and multi-
group data analysis is given in Sections 4 and 5. The versatility
and usefulness of our approach is illustrated on two real datasets
in Sections 6 and 7.

2. The optimization problem behind RGCCA for multiblock or
multigroup data analysis

RGCCA for multiblock and multigroup data analyses is based on
a single optimization problem that we present in this section. We
consider I matrices Q1, . . ., QI. Each matrix Qi is of dimension m � pi.
We also associate to each matrix Qi a weight column vector wi of
dimension pi and a symmetric definite positive matrix Mi of
dimensions pi � pi. Moreover, a design matrix C = {ci‘} is defined
with ci‘ = 1 if matrices Qi and Q‘ are connected, and ci‘ = 0
otherwise. The core optimization problem considered in this paper
is defined as follows:

Maximize
w1 ;...;wI

X
i;‘;i–‘

ci‘gðhQ iwi;Q ‘w‘iÞ

s:c: wt
i Miwi ¼ 1; i ¼ 1; . . . ; I

ð1Þ

where hx, yi = xty is the usual scalar product and g stands for the
identity, the absolute value or the square function. By setting
vi ¼ M1=2

i wi and Pi ¼ Q iM
�1=2
i optimization problem (1) becomes

Maximize
v1 ;...;vI

X
i;‘;i–‘

ci‘gð Pivi;P‘v‘h iÞ

s:c: vt
i vi ¼ 1; i ¼ 1; . . . ; I

ð2Þ

A monotone convergent algorithm can be developed for optimiza-
tion problem (2). This algorithm will be presented in detail in the
next section. It is worth mentioning that all the multiblock and mul-
tigroup methods to be presented in this paper are special cases of
optimization problem (2).

Table 1
PCA and SCA methods.

Methods Constraints

Separate PCA by group (Pearson (1901)) Pi = Wi and Wt
i Wi ¼ I 8i

SCA-W (Kiers & Ten Berge (1989)) W1 = � � � = WI

SCA-P (Kiers & Ten Berge (1994)) P1 = � � � = PI

SCA-S (Kiers & Ten Berge (1994)) RiWi = LDi "ia

SCA-PF2 (Timmerman & Kiers (2003)) P1 = � � � = PI and Ft
i Fi ¼ DiUDi 8ib

SCA-IND (Timmerman & Kiers (2003)) P1 = � � � = PI and Ft
i Fi ¼ D2

i 8i
SCA-ECP (Timmerman & Kiers (2003)) P1 = � � � = PI and ð1=niÞFt

i Fi ¼ I 8i

a L is an unknown (p � q) matrix and Di an unknown (q � q) diagonal matrix.
b U is an unknown (q � q) positive definite matrix with unit diagonal elements.
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