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a b s t r a c t

This study introduces the Static Bicycle Relocation Problem with Demand Intervals (SBRP-DI), a variant of
the One Commodity Pickup and Delivery Traveling Salesman Problem (1-PDTSP). In the SBRP-DI, the stations
are required to have an inventory of bicycles lying between given lower and upper bounds and initially
have an inventory which does not necessarily lie between these bounds. The problem consists of redis-
tributing the bicycles among the stations, using a single capacitated vehicle, so that the bounding con-
straints are satisfied and the repositioning cost is minimized. The real-world application of this
problem arises in rebalancing operations for shared bicycle systems. The repositioning subproblem asso-
ciated with a fixed route is shown to be a minimum cost network problem, even in the presence of han-
dling costs. An integer programming formulation for the SBRP-DI are presented, together with valid
inequalities adapted from constraints derived in the context of other routing problems and a Benders
decomposition scheme. Computational results for instances adapted from the 1-PDTSP are provided
for two branch-and-cut algorithms, the first one for the full formulation, and the second one with the
Benders decomposition.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Static Bicycle Relocation Problem with Demand Intervals
(SBRP-DI) is defined on a complete directed graph G ¼ ðV ;AÞ,
where V ¼ f0; . . . ;ng is the set of vertices and A is the set of arcs.
Vertex 0 is called the depot while the remaining vertices are called
stations. Associated with each vertex i 2 V , are three parameters
ðli; bi;uiÞ corresponding respectively to the lower bound, the cur-
rent supply, and the upper bound of the feasible amount of a com-
modity at the vertex. With each arc ði; jÞ 2 A is associated a travel
cost tij, and the cost associated with the handling of a bicycle is
denoted as h. A vehicle of capacity Q leaves the depot, performs a
tour visiting each vertex at most once to perform a pickup or a
delivery, and returns to the depot. At the end of the tour, the result-
ing inventory at every vertex i must lie within the interval ½li;ui�.
The objective is to minimize the total travel and handling cost.

The SBRP-DI is a variant of the One-Commodity Pickup
and Delivery Traveling Salesman Problem (1-PDTSP) studied by
Hernández-Pérez and Salazar-González (2004, 2007), in which a
single capacitated vehicle visits customers to pick up and deliver
the same commodity. In addition to the demand intervals, there

are a number of features of the SBRP-DI that differentiate it from
the 1-PDTSP. Firstly, the tour may not visit all vertices. Secondly,
the commodity cannot flow through the depot. Lastly, a handling
cost h is added to the routing cost per every commodity unit
handled. The demand intervals introduce a degree of flexibility asso-
ciated with transshipment vertices, i.e. vertices i 2 V for which
li 6 bi 6 ui. A transshipment vertex may or may not be visited, which
may help decrease the cost of routing by supplying or demanding
commodities as required. Notably, the Swapping Problem (SP)
introduced by Anily and Hassin (1992) also involves pickups and
deliveries with transshipment vertices and multiple commodities.
Branch-and-cut algorithms for the SP were developed by
Bordenave, Gendreau, and Laporte (2009, 2012) and Erdoğan,
Cordeau, and Laporte (2010). Bordenave, Gendreau, and Laporte
(2010) have also developed construction and improvement
heuristics for the SP.

Real-world applications of the SBRP-DI arise in shared bicycle
systems, which have attracted the attention of several groups of
researchers in recent years. These have been studied from several
perspectives: evaluating the mobility patterns of users, determin-
ing the number and location of stations, maximizing user satisfac-
tion, and minimizing the cost of relocating the bicycles. The study
by Raviv, Tzur, and Forma (2013) categorizes the bicycle relocation
problems as static and dynamic, which occur when the system
activity level is low and high, respectively. The authors study the
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Static Repositioning Problem (SRP), in which the objective is to
minimize a convex nonlinear function representing user dissatis-
faction, and present four integer programming formulations for
the SRP, together with computational results.

Research on shared vehicle systems is becoming increasingly
widespread. Static Stations Balancing Problem is studied in
Benchimol et al. (2011), and a 9.5-approximation algorithm is pro-
vided for this problem. Another closely related problem is that of
Chemla, Meunier, and Wolfler Calvo (2013), where a bicycle station
can be visited more than once for a pickup or a delivery. The
authors provide a branch-and-cut algorithm as well as a tabu
search algorithm for this problem. A variable neighborhood search
algorithm for balancing bicycle sharing systems is designed in
Rainer-Harbach, Papazek, Hu, and Raidl (2013). An interesting
study by Schuijbroek, Hampshire, and van Hoeve (2013) employs
queuing analysis to determine service level requirements at each
bike sharing station, and to solve the resulting vehicle routing
problem. A recent study (Nair & Miller-Hooks, 2014) analyzes the
equilibrium network design problem of shared-vehicle systems
and presents a bi-level, mixed-integer program.

Most of the problems cited above are based on a single demand or
supply value for every customer, which restricts the vehicle to pick-
ing or delivering a preset number of commodities. The SBRP-DI is
therefore more general, and empirically more difficult, because
these values must lie within an interval. It is a special case of the
models presented in Raviv et al. (2013) since these authors use a
convex user dissatisfaction function which can be set to zero inside
the interval and to infinity outside it. Let us define the deficit of sta-
tion i as di ¼maxfli � bi;0g and its excess as ei ¼maxfbi � ui;0g.
Transforming an instance of the SBRP-DI into one of the 1-PDTSP
by setting the demand (supply) of a station to be equal to its deficit
(excess) may yield an infeasible instance since the sum of the
demands may not be equal to the sum of supplies.

In this study, we provide two exact algorithms for the SBRP-DI. To
gain a better insight into the SBRP-DI, we first study the subproblem
of computing pickup and delivery quantities when the vehicle route
is fixed. We show that this subproblem is a minimum cost network
flow problem (MCNFP), whether the handling cost h ¼ 0 or not. We
also present a model for the general problem consisting of simulta-
neously determining the vehicle route as well as the pickup and
delivery quantities. We develop a standard branch-and-cut algo-
rithm as well as a Benders decomposition based branch-and-cut
algorithm, and we present computational results for both cases.

The remainder of this paper is organized as follows. In Section 2,
we study the subproblem corresponding to a fixed route, without
and with handling cost. In Section 3 we present an integer linear
programming formulation for the SBRP-DI based on our findings
in Section 2, as well as valid inequalities we have adapted from
the routing literature. A Benders decomposition scheme for the
integer linear programming formulation is provided in Section 4,
together with a unified branch-and-cut algorithm capable of han-
dling both algorithms. This is followed by computational results
in Section 5, and by conclusions in Section 6.

2. The fixed route subproblem

We first focus on the subproblem of determining the pickup and
delivery amounts when the vehicle route is fixed. For the sake of
simplicity, we assume that the vertices are numbered in the order
they are visited. The two cases for which h ¼ 0 and h P 0 will be
treated separately.

2.1. The fixed route subproblem with no commodity handling cost

The fixed route subproblem without handling cost is called the
SBRP-DIF and is defined on an auxiliary graph bG ¼ ðbV ; bAÞ. Denote

the set of vertices by bV ¼ bV 1 [ bV 2, with bV 1 ¼ V and bV 2 ¼ fnþ 1g.
The supply of vertex i 2 bV 1 is b̂i ¼ bi, and b̂nþ1 ¼ �

P
i2V bi. Denote

the set of arcs by bA ¼ bA1 [ bA2, where bA1 and bA2 are constructed
as follows. For every vertex i 2 bV 1 n f0;ng, insert an arc ði; iþ 1Þ
into bA1, with cost 0, lower bound 0 and upper bound Q. These arcs
represent the number of units transported to the next vertex. We
also insert two arcs ð0;1Þ and ðn;0Þ into bA1, with cost 0, lower
bound 0 and upper bounds minfb0;Qg and Q, respectively. These
arcs represent number of units leaving and entering the depot.
The flow on the arc ð0;1Þ is also bounded above by the supply at
the depot, in order to avoid commodities from flowing through
the depot. For every vertex i 2 bV 1, insert an arc ði; nþ 1Þ into bA2,
with cost 0, lower bound li and upper bound ui. This arc represents
the final amount of the commodity left at vertex i. Define the set of
arcs leaving vertex i as dþðiÞ, and the set of arcs entering vertex i as
d�ðiÞ. Let zij denote the commodity flow on arc ði; jÞ. We write zðSÞ
to denote the sum of the z variables in arc set S, i.e. zðSÞ ¼

P
ði;jÞ2Szij.

We then have to solve

ðSBRP-DIFÞ zðdþðiÞÞ � zðd�ðiÞÞ ¼ b̂i ði 2 bV Þ ð1Þ

li 6 zij 6 ui ðði; jÞ 2 bA2Þ ð2Þ
0 6 z01 6minfb0;Qg ð3Þ

0 6 zij 6 Q ðði; jÞ 2 bA1 n fð0;1ÞgÞ: ð4Þ

Fig. 1 depicts an instance of the SBRP-DIF. Using an enhanced
capacity scaling algorithm, together with the fact that the number
of arcs is OðnÞ, the problem stated above can be solved in
Oðn2 log n2Þ time (Ahuja, Magnanti, & Orlin, 1993).

2.2. The fixed route subproblem with commodity handling cost

The fixed route subproblem with handling cost is called the
SBRP-DIHF and is defined on an auxiliary graph G ¼ ðV ;AÞ. Denote
the set of vertices by V ¼ V1 [ V2 [ V3, with V1 ¼ V and
V3 ¼ f2nþ 2g. We construct V2 by including a vertex for every ver-
tex i 2 V , where the copy of vertex i in V2 is nþ 1þ i. Set the supply
of vertex i 2 V1 as �bi ¼ bi and the demand of vertex nþ 1þ i 2 V2

as �bnþ1þi ¼ �bi. Let �b2nþ2 ¼ 0. Denote the set of arcs
A ¼ A1 [ A2 [ A3, where A1; A2, and A3 are constructed as follows.
For vertices i 2 V1 n f0;ng, insert an arc ði; iþ 1Þ into A1, with cost
0, lower bound 0 and upper bound Q. These arcs represent the
number of units transported to the next vertex. We also insert
two arcs ð0;1Þ and ðn;0Þ into A1, with cost h, lower bound 0 and

Fig. 1. Instance of the SBRP-DIF.
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