
Stochastics and Statistics

Convergence of controlled models and finite-state approximation for
discounted continuous-time Markov decision processes with constraints

Xianping Guo a,⇑, Wenzhao Zhang a,b

a School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, PR China
b College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, PR China

a r t i c l e i n f o

Article history:
Received 31 December 2012
Accepted 24 March 2014
Available online 5 April 2014

Keywords:
Constrained continuous-time Markov
decision processes
Unbounded transition rate
Convergence
Finite approximation

a b s t r a c t

In this paper we consider the convergence of a sequence fMng of the models of discounted continuous-
time constrained Markov decision processes (MDP) to the ‘‘limit’’ one, denoted by M1. For the models
with denumerable states and unbounded transition rates, under reasonably mild conditions we prove
that the (constrained) optimal policies and the optimal values of fMng converge to those ofM1 , respec-
tively, using a technique of occupation measures. As an application of the convergence result developed
here, we show that an optimal policy and the optimal value for countable-state continuous-time MDP can
be approximated by those of finite-state continuous-time MDP. Finally, we further illustrate such
finite-state approximation by solving numerically a controlled birth-and-death system and also give
the corresponding error bound of the approximation.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Constrained Markov decision processes (MDP) form an impor-
tant class of stochastic control problems with applications in many
areas such as telecommunication networks and queueing systems;
see, for instance, Guo and Hernández-Lerma (2009), Hordijk and
Spieksma (1989), and Sennott (1991). As is well known, the main
purpose of studies on constrained MDP is on the existence and
computation of optimal policies, see, for instance, the literature
on the discrete-time MDP by Feinberg and Shwartz (1999),
Feinberg (2000), Hordijk and Spieksma (1989), Hernández-Lerma
and González-Hernández (2000), Hernández-Lerma, González-
Hernández, and López-Martínez (2003), and Sennott (1991), and
the works on continuous-time MDP by Guo (2007), Guo and
Hernández-Lerma (2003), Guo and Hernández-Lerma (2009), Guo
and Piunovskiy (2011). On the other hand, from a theoretical and
practical point of view, it is of interest to analyze the convergence
of optimal values and optimal policies for constrained MDP, and
such convergence problems have been considered, see, for
instance, Altman (1999), Zadorojniy and Shwartz (2006), Alvarez-
Mena and Hernández-Lerma (2002) and so on. Alvarez-Mena and
Hernández-Lerma (2006) also consider the convergence problem
as in Alvarez-Mena and Hernández-Lerma (2002) for the case of

more than one controller. To the best of our knowledge, however,
these existing works for the convergence problems are on the con-
strained discrete-time MDP. Most recently, the convergence prob-
lem of controlled models for unconstrained continuous-time MDP
has also been considered by Prieto-Rumeau and Lorenzo (2010)
and Prieto-Rumeau and Hernández-Lerma (2012) using an approx-
imation of the optimality equations. However, the similar conver-
gence problem for constrained continuous-time MDP has not been
considered.

This paper studies the convergence problem for constrained
continuous-time MDP. More precisely, in this paper we consider
a sequence fMng of the models of the constrained continuous-time
MDP with the following features: (1) the state space is denumera-
ble, but action space is general; (2) the transition rates and all
reward/cost functions are allowed to be unbounded; and (3) the
optimality criterion is the expected discounted reward/cost, while
some constraints are imposed on similar discounted rewards/costs.
We aim to give suitable conditions imposed on the models fMng,
under which the optimal policies and the optimal values of
fMng converge to those of the limit model M1 of the sequence
fMng, respectively.

In general, the approaches to study continuous-time MDP can
be roughly classified into two groups: the indirect method and
the direct method. For the indirect method, the idea is to convert
the continuous-time MDP into equivalent discrete-time MDP. This
approach has been justified by Feinberg (2004), Feinberg (2012),
and Piunovskiy and Zhang (2012). On the other hand, the most
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common direct method to investigate constrained continuous-
time MDP is to establish an equivalent linear program formulation
of the original constrained problem, see Guo and Piunovskiy
(2011). In this paper, we follow this direct approach without
involving discrete-time MDP. First, as in Guo and Piunovskiy
(2011), we transform the optimality problem in constrained con-
tinuous-time MDP into an equivalent optimality problem over a
class of some probability measures by introducing an occupation
measure of a policy. Then, we analyze the asymptotic characteriza-
tion of the occupation measure and the expected discounted
rewards/costs, which are used to prove that the optimal values
and optimal policies of the sequence fMng converge to those of
M1. Finally, we apply our results to the approximations of the
optimal policies and the optimal value of finite-state continuous-
time MDP to those of countable-state continuous-time MDP. More
precisely, for a modelM0

1 of constrained countable-state continu-
ous-time MDP satisfying the usual conditions as in Guo and
Hernández-Lerma (2009) and Guo and Piunovskiy (2011), we can
construct a sequence of models fM0

ng of constrained continuous-
time MDP with finite states such that every accumulation point
of a sequence of optimal policies of M0

n

� �
is optimal for M0

1 and
that the sequence of the optimal values of M0

n

� �
converge to the

optimal value of M0
1. Furthermore, we further illustrate such

finite-state approximation by solving numerically a controlled
birth-and-death system, and also give the corresponding error
bound of the approximation. The motivation of providing such
approximation is from the following facts: (i) there exist many
methods to solve the optimal value and optimal policies for uncon-
strained continuous-time MDP with finite sates, for example, the
value iteration algorithm and the policy iteration algorithm by
Guo and Hernández-Lerma (2009) and Puterman (1994), the
approximation dynamic programming technique by Cervellera
and Macciò (2011), and so on. However, these methods, which
are all based on the optimality equation, are not applied to con-
strained continuous-time MDP since the optimality equation no
longer exists for the constrained MDP; (ii) the optimal value and
optimal policies for finite-state constrained continuous-time MDP
with finite actions can be computed by the well known linear pro-
gramming in Guo and Piunovskiy (2011) and Puterman (1994),
whereas in general the optimal value and optimal policies cannot
be computed for countable-state continuous-time MDP because
the number of states in such MDP is infinite.

The rest of this paper is organized as follows. In Section 2, we
introduce the models of constrained continuous-time MDP and
the convergence problems. In Section 3, we state our main results,
which are proved in Section 6, after technical preliminaries given
in Section 5. An application of the main results to finite state
approximation and a numerable example are given in Section 4.
Finally, we finish this article with a conclusion in Section 7.

2. The models

In this section we introduce the models and convergence
problems we are concerned with.

Notation. If X is a Polish space, we denote by BðXÞ its Borel
r-algebra, by Dc the complement of a set D # X (with respect to
X), by PðXÞ the set of all probability measures on BðXÞ, endowed
with the topology of weak convergence. For a finite set D, we
denote by jDj the number of its elements. Let N :¼ f1;2; . . .g and
N :¼ N

S
f1g.

Consider the sequence of models fMng for constrained contin-
uous-time MDP:

Mn :¼ Sn;ðAnðiÞ; i2 SnÞ;qnð�ji;aÞ;c0
nði;aÞ; cl

nði;aÞ;d
l
n;16 l6p

� �
;cn

n o
; n2N;

ð2:1Þ

where Sn are the state spaces, which are assumed to be denumera-
ble. The set AnðiÞ represents the set of available actions or decisions
at state i 2 Sn for model Mn. Let

Kn :¼ ði; aÞji 2 Sn; a 2 AnðiÞf g;

represent the set of all feasible state-action pairs for Mn.
In what follows, we assume that Sn " S1, and S1 ¼f0;1; . . . ;n; . . .g

without loss of generalization. As a consequence, for each i2 S1,
we can define nðiÞ :¼ minfn P 1; i2 Sng. Furthermore, we assume
that AnðiÞ#A1ðiÞðn P nðiÞ; i2 S1Þ, and moreover, for each
n2N; AnðiÞ is in BðAnÞ, where An is a Polish space, the action space
for Mn. Thus, BðAnðiÞÞ¼BðA1ðiÞÞ\AnðiÞ and PðAnðiÞÞ#PðA1ðiÞÞ, for
each i2 S1 and n P nðiÞ.

For fixed n 2 N, the function qnð�ji; aÞ in (2.1) refers to the
conservative transition rates, that is, qnðjji; aÞP 0 andP

j2Sn
qnðjji;aÞ¼0 for all ði;aÞ 2Kn and i – j. Moreover, qnðjji;aÞ is a

measurable function on AnðiÞ for each fixed i; j2 Sn. Furthermore,
qnðjji;aÞ is assumed to be stable, that is, q�nðiÞ :¼
supa2AnðiÞjqnðiji;aÞj<1 for each i2 Sn.

Finally, c0
n corresponds to the objective cost function, and

cl
nð1 6 l 6 pÞ correspond to the cost functions on which some con-

straints are imposed. The real numbers dl
nð1 6 l 6 pÞ denote the

constraints, and cn denotes initial distribution on Sn for Mn.
To complete the specification of fMng (n 2 N), we introduce the

classes of policies.
A randomized Markov policy p for Mn is a family ðpt; t P 0Þ of

stochastic kernels satisfying: (i) for each t P 0 and i 2 Sn;ptð�jiÞ is
a probability measure (p.m.) on AnðiÞ; and (ii) for each
D 2 BðAnðiÞÞ, and i 2 Sn;ptðDjiÞ is a Borel measurable function in
t P 0.

Moreover, a policy p ¼ ðpt ; t P 0Þ is called (randomized)
stationary for Mn if, for each i 2 Sn, there is a p.m. pð�jiÞ 2 PðAnðiÞÞ
such that ptð�jiÞ � pð�jiÞ for all t P 0. We denote this policy by
ðpð�jiÞ; i 2 SnÞ. We denote by Pn the family of all randomized
Markov policies and by Ps

n the set of all stationary policies for each
n 2 N.

For each n 2 N and policy p ¼ ðpt ; t P 0Þ 2 Pn, let

qnðjji;ptÞ :¼
Z

AnðiÞ
qnðjji; aÞptðdajiÞ; cl

nði;ptÞ :¼
Z

AnðiÞ
cl

nði; aÞptðdajiÞ

ð2:2Þ

for each i; j 2 Sn; t P 0, and 0 6 l 6 p. When p is stationary, we will
write qnðjji;ptÞ and cl

nði;ptÞ as qnðjji;pÞ and cl
nði;pÞ, respectively.

Let Q nðt;pÞ :¼ ½qnðjji;ptÞ� be the associated matrix of transition
rates with the ði; jÞth element qnðjji;ptÞ. As the matrix ½qnðjji; aÞ� is
conservative and stable, so is Q nðt;pÞ. Thus, Proposition C.4 in
Guo and Hernández-Lerma (2009) ensures the existence of a
so-called minimal transition function (see, Definition C.3 in Guo
and Hernández-Lerma (2009)) pnðs; i; t; j;pÞ for Mn with i; j 2 Sn

and t P s P 0.
To guarantee the regularity condition (i.e.

P
j2Sn

pnðs; i; t; j;pÞ ¼ 1
for all i 2 Sn and t P s P 0), we impose the following so-called drift
conditions.

Assumption 2.1. There exist a function 1 6 x on S1 and
xðiÞ " þ1 as i!1, and constants q; b; L > 0, such that

(a)
P

j2Sn
qnðjji; aÞxðjÞ 6 qxðiÞ þ b for all ði; aÞ 2 Kn;n 2 N;

(b) q�nðiÞ 6 LxðiÞ for all i 2 Sn;n 2 N.

For each p 2 Pn, n 2 N and cn 2 PðSnÞ, under Assumption 2.1, by
Proposition C.9 and Theorem 2.3 in Guo and Hernández-Lerma
(2009), the corresponding pnðs; i; t; j;pÞ is unique and regular, and
moreover, there exists a unique probability space ðX;F ; Pp

cn
Þ and

a state-action process fðxt; atÞ; t P 0g defined on this space. The

X. Guo, W. Zhang / European Journal of Operational Research 238 (2014) 486–496 487



Download	English	Version:

https://daneshyari.com/en/article/478111

Download	Persian	Version:

https://daneshyari.com/article/478111

Daneshyari.com

https://daneshyari.com/en/article/478111
https://daneshyari.com/article/478111
https://daneshyari.com/

