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a b s t r a c t

Hit-and-Run is known to be one of the best random sampling algorithms, its mixing time is polynomial in
dimension. However in practice, the number of steps required to obtain uniformly distributed samples is
rather high. We propose a new random walk algorithm based on billiard trajectories. Numerical exper-
iments demonstrate much faster convergence to the uniform distribution.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Generating points uniformly distributed in an arbitrary
bounded region Q � Rn finds applications in many computational
problems (Tempo, Calafiore, & Dabbene, 2004; Rubinstein &
Kroese, 2008).

Straightforward sampling techniques are usually based on one
of the three approaches: rejection, transformation, and composi-
tion. In the rejection approach, the region of interest Q is embed-
ded into a region with available uniform sampler B (usually a
box or a ball). At the next step, samples that do not belong to Q
are rejected. Assume Q is the unit ball, and the bounding region
B is the box ½�1;1�n. Then for n ¼ 2k, the ratio of the volumes of

the box and the ball is equal to q ¼ VolðQÞ
VolðBÞ ¼ pk

k!2k, thus q � 10�8 for

n ¼ 20, so that one has to generate � 108 samples to obtain just
a few of them in Q. For polytopes this ratio can be much smaller.
Another way to exploit pseudo-random number generator for a
simple region B is to map B onto Q via a smooth deterministic func-
tion with constant Jacobian. For instance, to obtain uniform sam-
ples in Q ¼ fx : xT Ax < 1g, A being a positive definite matrix, it
suffices to generate samples y uniformly in the unit ball jjyjj2 < 1

and transform them as x ¼ A�1=2y. Unfortunately, such a transfor-
mation exists just for a limited class of regions. In the composition
approach, the set Q is partitioned into a finite number of sets that

can be efficiently sampled. For instance, a polytope can be parti-
tioned into simplices, but the large number of them makes the pro-
cedure computationally hard.

Other sampling procedures use modern versions of the Monte
Carlo technique based on the Markov Chain Monte Carlo (MCMC)
approach (Gilks, Richardson, & Spiegelhalter, 1996; Diaconis,
2009). For instance, efficient algorithms for computing volumes
using random walks can be found in Dyer, Frieze, and Kannan
(1991), Lovasz and Somonovits (1993), Lovasz and Deak (2012).
One of the most famous and efficient algorithms of the MCMC type
is Hit-and-Run (HR), which was originally proposed by Turchin
(1971) and independently by Smith (1984). The brief description
of the HR algorithm is as follows. At every step HR generates a ran-
dom direction uniformly over the unit sphere and picks the next
point uniformly on the segment of the straight line in the given
direction in Q. HR is applicable to various control and optimization
problems (Polyak & Gryazina, 2008; Polyak & Gryazina, 2011;
Dabbene, Shcherbakov, & Polyak, 2010) as well as to simulation-
based multiple criteria decision analysis (Tervonen, van
Valkenhoef, Basturk, & Postmus, 2013). Unfortunately, even for
simple ‘‘bad’’ sets, such as level sets of ill-posed functions, HR tech-
niques fail or become computationally inefficient.

A variety of applications and drawbacks of the existing tech-
niques provides much room for improving and developing new
sampling algorithms. For instance, there were attempts to exploit
the approach proposed for interior-point methods of convex opti-
mization (Nesterov & Nemirovsky, 1994) and to combine it with
MCMC algorithms. As a result, the Barrier Monte Carlo method
(Polyak & Gryazina, 2010) generates random points with better
uniformity properties as compared to the standard Hit-and-Run.
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On the other hand, the complexity of every iteration is in general
high enough (the calculation of r2FðxÞ

� ��1=2
is required, where

FðxÞ is a barrier function of the set). Moreover, the Barrier Monte
Carlo method does not accelerate convergence for simplex-like
sets.

In this paper we propose a new random walk algorithm moti-
vated by physical phenomena of gas diffusing in a vessel. A particle
of gas moves with a constant speed until it meets the boundary of
the vessel, then it reflects (the angle of incidence equals the angle
of reflection) and so on. When a particle hits another one, its direc-
tion and speed change. In our simplified model we assume that the
direction changes randomly, while the speed remains the same.
Thus our model combines the ideas of the Hit-and-Run technique
and use of the billiard trajectories. There exists a vast literature
on mathematical billiards, and many useful facts can be extracted
from there (Tabachnikov, 1995; Galperin & Zemlyakov, 1990; Sinai,
1970; Sinai, 1978; Kozlov & Treshchev, 1991). The traditional the-
ory addresses the behavior of one particular billiard trajectory in
different billiard tables, their ergodic properties, and the conditions
for the existence of periodic orbits. In stochastic analogs of the
classical billiard (Evans, 2001), a direction after reflection is chosen
randomly uniformly. Shake-and-Bake algorithms are based on sto-
chastic billiards and generate points on the boundary of a convex
set (Boender et al., 1991). The recently proposed version of the
Shake-and-Bake algorithm (Dieker & Vempala, xxxx) exhibits poly-
nomial-time convergence to the uniform distribution. Our algo-
rithm is aimed at sampling the interior of a set (actually, later in
the text we consider open regions). Besides that, we extend billiard
trajectories of random length keeping the standard reflection law.
Such an incorporation of randomness also improves the ergodic
properties.

The paper is organized as follows. In Section 2 we present a
novel sampling algorithm and prove that it produces asymptoti-
cally uniformly distributed samples in Q. In Section 3 we pay much
attention to some properties of the Billiard Walk (BW), implemen-
tation issues are discussed as well. Simulation of BW for particular
test domains is presented in Section 4. Much attention is devoted
to the capability of BW to get out of the corner, in comparison with
HR. Here we consider just the most demonstrative types of geom-
etry. In Section 4.6 we briefly discuss possible applications of the
algorithm.

2. Algorithm

Assume there is a bounded, open connected set Q � Rn;n P 2,
and a point x0 2 Q . Our aim is to generate asymptotically uniform
samples xi 2 Q ; i ¼ 1; . . . ;N.

The new BW algorithm generates a random direction uniformly
over the unit sphere. Then the next sample is chosen as the end-
point of the billiard trajectory of length ‘. This length is chosen ran-
domly; i.e., we assume that the probability of collision with
another particle is proportional to dt for small time instances dt,
this validates the formula for ‘ in the algorithm below. The scheme
of the method is given in Fig. 1, while the precise routine is as
follows.

2.1. Algorithm of Billiard Walk (BW)

1. Take x0 2 Q ; i ¼ 0; x ¼ x0.
2. Generate the length of the trajectory ‘ ¼ �s log n; n being uni-

form random on [0,1], s is a specified constant parameter of
the algorithm.

3. Pick a random direction d 2 Rn uniformly distributed over the
unit sphere (i.e., d ¼ n=knk, where n 2 Rn has the standard
Gaussian distribution). Construct a billiard trajectory starting

at xi and having initial direction d. When the trajectory meets
the boundary with internal normal s; jjsjj ¼ 1, the direction is
changed as

d! d� 2ðd; sÞs;

where ðd; sÞ is the scalar product.
4. If a point with nonsmooth boundary is met or the number of

reflections exceeds R, go to step 2. Otherwise proceed until
the length of the trajectory equals ‘.

5. i ¼ iþ 1, take the end-point as xiþ1 and go to step 2.

The algorithm involves two parameters s and R and we discuss
their choice below.

We prove asymptotical uniformity of the samples produced by
BW for convex and nonconvex cases separately. The requirements
on Q are different for these two cases, while the sampling algo-
rithm remains the same. Consider the Markov Chain induced by
the BW algorithm x0; x1; . . .. For an arbitrary measurable set
A # Q , denote by PðAjxÞ the probability of obtaining xiþ1 2 A for
xi ¼ x by the BW algorithm. Then PNðAjxÞ is the probability to get
xiþN 2 A for xi ¼ x. We also denote by pðyjxÞ the probability density
function for PðAjxÞ, i.e. PðAjxÞ ¼

R
A pðyjxÞdy.

Theorem 1. Assume Q is an open bounded convex set in Rn, the
boundary of Q is piecewise smooth. Then the distribution of points xi

generated by the BW algorithm tends to the uniform one over Q, i.e.

lim
N!1

PNðAjxÞ ¼ kðAÞ

for any measurable A # Q ; kðAÞ ¼ VolðAÞ=VolðQÞ and any starting
point x.

Proof. First, the algorithm is well-defined: at step 4 with zero
probability the algorithm sticks at a point with nonsmooth bound-
ary. On the other hand ‘ and d are chosen in such a way that, with
positive probability, xiþ1 is obtained by less than R reflections (see
detailed discussion of ‘‘bad’’ situations in SubSections 3.1 and 3.2).

In view of Theorem 2 in Smith (1984) based on the asymptotic
properties of Markov Chains, the two assumptions on pðyjxÞ imply
that the uniform distribution over Q is a unique stationary
distribution, and it is achieved for any starting point x 2 Q . The
first assumption requires the existence of pðyjxÞ and its symmetry;
the second assumption claims its positivity pðyjxÞ > 0 for all
x; y 2 Q .
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Fig. 1. Billiard walk.
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