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a b s t r a c t

The analytic hierarchy process (AHP) is a widely-used method for multicriteria decision support based on
the hierarchical decomposition of objectives, evaluation of preferences through pairwise comparisons,
and a subsequent aggregation into global evaluations. The current paper integrates the AHP with stochas-
tic multicriteria acceptability analysis (SMAA), an inverse-preference method, to allow the pairwise com-
parisons to be uncertain. A simulation experiment is used to assess how the consistency of judgements
and the ability of the SMAA-AHP model to discern the best alternative deteriorates as uncertainty
increases. Across a range of simulated problems results indicate that, according to conventional bench-
marks, judgements are likely to remain consistent unless uncertainty is severe, but that the presence
of uncertainty in almost any degree is sufficient to make the choice of best alternative unclear.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The analytic hierarchy process (Saaty, 1990) is a widely-used
method for multicriteria decision support based on a hierarchical
decomposition of a decision problem into multiple criteria, the
assessment of preferences using pairwise comparisons, and an
aggregation of these pairwise preferences into an overall evalua-
tion of the alternatives. While a number of practical and theoretical
aspects of the AHP have proved controversial (see for example the
discussion in Belton & Stewart (2002)), it has found widespread
application and acceptance in practice (e.g. Vaidya & Kumar,
2006), to the extent that it may well be among the most-frequently
applied of currently available methods for decision support.

At the heart of the method is a nine-point semantic scale used
by decision makers to express their preferences for one alternative
over another on a particular criterion, and for how much one crite-
rion is valued over another. It is clear that sometimes these assess-
ments will be subject to uncertainty – meaning that the decision
maker (DM) does not possess the necessary information to de-
scribe or deterministically predict the inputs required by the AHP
(see Durbach & Stewart (2012) for a review of uncertainty in mul-
ticriteria decision support). Although the standard AHP method
does not directly treat uncertainty or imprecision in its inputs, a

number of extensions have been proposed to address this issue,
using for example fuzzy set theory (Boender, de Graan, & Lootsma,
1989; Buckley, 1985; Laarhoven & Pedrycz, 1983), interval arith-
metics (Salo & Hämäläinen, 1995), and various stochastic tech-
niques (Hauser & Tadikamalla, 1996; Saaty & Vargas, 1987).

This paper adds to that body of work by introducing a simula-
tion-based method for representing imprecise or uncertain pairwise
comparison information from one or more DMs through stochastic
distributions, and a computational method to treat this information
in the analysis. The method is a variant of stochastic multicriteria
acceptability analysis (SMAA; see Lahdelma, Hokkanen, & Salminen
(1998), Lahdelma & Salminen (2001), Tervonen, Hakonen, &
Lahdelma (2008)), an inverse-preference methodology applied here
to the case of the AHP. The resulting SMAA-AHP can be used with
arbitrary independent or dependent distributions for the compari-
sons, and is based on Monte Carlo simulation from probability
distributions appropriately defined over any uncertain pairwise
comparisons and a subsequent collection of statistics summarizing
the performance of each alternative. SMAA-AHP is related to other
simulation-based methods, most notably Hauser and Tadikamalla
(1996), but presents additional information to the DM, defines
uncertainty regions differently, and uses a different distribution
for the uncertain judgements. SMAA-AHP also allows more flexible
representation of weight constraints and can also be used with
missing preference information.

The remainder of the paper is organized as follows. Section 2
reviews uncertainty modelling in the AHP. Section 3 describes
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the SMAA-AHP method. Section 4 demonstrates the method using
a small example. Section 5 discusses the advantages and potential
problems with the method, guided by the results of a simulation
study. A final section concludes the paper.

2. Uncertainty modelling in the AHP

In the following, we consider a decision problem consisting of I
alternatives, each evaluated on K criteria. Let zik be the evaluation
of alternative i in terms of criterion k, according to some suitable
performance measure. In the standard AHP the DM performs pair-
wise comparisons at each node of the objectives hierarchy,
expressing their preferences for one alternative over another on a
particular criterion, or for how much one criterion is valued over
another. The pairwise preference aijk for alternative i over alterna-
tive j on criterion k represents the ratio between evaluations zik=zjk,
expressed on a discrete scale from 1 to 9 (where 1 means equal
preference and 9 denotes absolute preference). Where convenient,
we drop the criterion subscript and refer simply to the pairwise
evaluation aij. The same approach is used to compare the impor-
tance of criteria, in which case we refer to a pairwise preference
aij for criterion i over criterion j representing the ratio between
trade-off weights wi=wj. In cases where pairwise comparisons
can be assessed precisely, a number of ways have been proposed
to aggregate these into global measures of performance (Belton &
Stewart, 2002). Most commonly, the eigenvector corresponding
to the largest eigenvalue of the (I � I or K � K) pairwise comparison
matrix A ¼ ½aij� is extracted (the so-called priority vector), and a
global evaluation formed by a simple weighted sum.

Our concern is with decision making situations in which the
pairwise evaluations aijk (and consequently computed values for
zik and wj) are uncertain. Early research into the modelling of
probabilities in the AHP was largely concerned with deriving rela-
tionships between the distributional form of the uncertain pair-
wise judgements and the distributions of the marginal
evaluations contained in the priority vector (Basak, 1989, 1991;
Saaty & Vargas, 1987; Vargas, 1982). Subsequent probabilistic
AHP models (Banuelas & Antony, 2007; Basak, 1998; Hauser &
Tadikamalla, 1996; Levary & Wan, 1998; Levary & Wan, 1999) have
focused on using Monte Carlo simulation to randomly generate
pairwise evaluations from the distributions specified by decision
makers. These approaches all follow the same basic approach, first
expressed by Hauser and Tadikamalla (1996). The decision maker
expresses pairwise comparisons in the usual way i.e. using the
same 1–9 scale as for deterministic AHP, except that these compar-
isons are allowed to be random variables with associated probabil-
ity distributions. Hauser and Tadikamalla generated random
judgements a�ij uniformly on the interval ½aij � daij; aij � daij�, with
d an uncertainty factor, before transforming any values less than
one using f ða�ijÞ ¼ 1=ð2� a�ijÞ. Further restrictions may be placed
on the types of distributions if necessary. Next sets of random pair-
wise judgements are generated using Monte Carlo simulation. For
each set of randomly generated evaluation matrices the priority
vector is computed. Repeating this process many times gives a dis-
tribution of priorities for each alternative, which can be used to
rank the alternatives, in most cases using the mean of the
distribution.

Most authors make small embellishments around this general
process. Levary and Wan (1998) incorporate scenarios into their
model (see also Levary & Wan (1999)). Decision makers thus assess
different (possibly stochastic) judgemental matrices for each sce-
nario. Their simulation approach first generates a random number
to specify which scenario is being used, and then generates further
random numbers specifying the pairwise judgements within each
scenario. Basak (1998) uses a Bayesian approach to integrate ex-

pert judgements with the decision maker’s prior probabilistic
assessments. Pairwise judgements are simulated by drawing from
the posterior distributions. Banuelas and Antony (2007) add a sen-
sitivity analysis phase to investigate the influence of the probabi-
listic judgements on the consistency index. As mentioned above
the primary distinction between existing simulation-based AHP
methods and SMAA-AHP is the additional information that is pre-
sented to DMs, which can be useful in facilitating a greater under-
standing of the decision problem and progressing towards a final
decision. We discuss this information in the presentation of the
SMAA-AHP given in the following section.

3. The SMAA-AHP method

In SMAA-AHP, the DMs may express their comparisons on a dis-
crete scale from 1 to 9 or use arbitrary positive values. The DMs can
give their pairwise comparisons either as precise values, as in AHP,
or as intervals to express imprecise or uncertain preferences. The
DMs can give the lower and upper bounds of the intervals explic-
itly, or express them as ½aij=dij; aijdij� where aij is the geometric
mean of the interval and dij P 1 is the so-called imprecision factor
of their pairwise comparison. For example, the interval [0.5,8] cor-
responds to the pairwise comparison 2 with imprecision factor 4.
The imprecision factor is a meaningful way to express uncertainty
on a ratio scale, where all values should be positive.

When the DMs express their pairwise comparisons, it should be
checked that these are sufficiently consistent. In the original AHP,
where pairwise comparisons are expressed deterministically, a
popular approach for evaluating consistency is to compare k1, the
leading eigenvalue of an assessed pairwise comparison matrix,
with I, the leading eigenvalue obtained from an I � I matrix of per-
fectly consistent judgements (in the sense that aik ¼ aijajk; 8i; j; k).
To provide a measure of the severity of this deviation,
ðk1 � IÞ=ðI � 1Þ is compared with the mean inconsistency value de-
rived from many randomly generated reciprocal matrices of the
same size. An inconsistency ratio of 0.1 or less is generally stated
to be acceptable (Saaty, 1990), meaning that the inconsistency of
the observed pairwise comparisons should be no more than 10%
of what would be observed, on average, from completely random
judgements. For an interval-based analysis, a natural analogue
would be to suggest that the geometric mean of the comparisons
should have a inconsistency ratio below 10%. Note, however, that
this benchmark, as well as the general use of the inconsistency ra-
tio, has been strongly criticized (see in particular Bana e Costa &
Vansnick (2008)).

After each DM has given his/her pairwise comparisons, we com-
bine them into intervals ½amin

ij ; amax
ij �where amin

ij is the minimal value
that any DM has expressed and amax

ij is the maximal value. We rep-
resent then the aggregated comparison values by stochastic vari-
ables with suitable probability distributions. Technically, it is
possible to use arbitrary distributions. However, in the absence
of information about the distribution, we apply the truncated
and scaled 1=x distribution. The PDF (probability density function)
of the scaled 1=x distribution is given by f ðxÞ ¼ a=x when
x 2 ½xmin; xmax�, and zero elsewhere. The scaling coefficient
a ¼ 1= lnðxmax � xminÞ is determined so that the integral over the
PDF equals one.

The motivation for using the scaled 1=x distribution to repre-
sent pairwise comparisons in an interval is that this distribution
allocates equal probability mass for all sub-intervals ½x=d; xd� corre-
sponding to the same imprecision factor d. For example, given a
pairwise comparison interval [0.5,8], the scaled 1=x distribution
allocates equal probability mass of 1/4 for each of the subintervals
½0:5;1�; ½1;2�; ½2;4�, and ½4;8�. If the interval is degenerate, i.e.
amin

ij ¼ amax
ij , we use Dirac’s delta function (the unit impulse

function) as the distribution.
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