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a b s t r a c t

We address the quickest path problem proposing a new algorithm based on the fact that its optimal solu-
tion corresponds to a supported non-dominated point in the objective space of the minsum–maxmin
bicriteria path problem. This result allows us to design a label setting algorithm which improves all exist-
ing algorithms in the state-of-the-art, as it is shown in the extensive experiments carried out considering
synthetic and real networks.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The quickest path problem (QPP) consists of finding a path in a
directed network to transmit a given amount of data r between a
source node s and a destination node t with minimum transmis-
sion time. The transmission time depends on two parameters: an
additive function that the represents the path delay, and a bottle-
neck function that represents the path capacity or bandwidth. The
QPP arises in several applications in road transportations, telecom-
munication networks, convoy movement problems, etc.

The QPP was first proposed by Moore (1976), who gave an algo-
rithm running in Oðhmþ hn log nÞ time, where n and m are the
number of nodes and arcs, respectively, in the network, and h is
a parameter smaller than the number of different capacities
greater than the capacity of the shortest path with respect to lead
time. Since then, several algorithms solving QPP appeared in the
literature. The algorithm of Chen and Chin (1990) transforms the
network (r copies of the original network) and then compute short-
est paths according to lead time, selecting finally one with the low-
est transmission time. The algorithm runs in Oðrmþ rn log rnÞ time
and uses OðrðnþmÞÞ space for a given value of r, where r 6 m is
the number of distinct capacities in the original network. Rosen
et al. (1991) developed an alternative algorithm solving the QPP
by a sequence of shortest path computations on networks where
the minimum capacity increases. They obtain an algorithm run-
ning in Oðrmþ rn log nÞ time, but using OðnþmÞ space only.

Martins and Santos (1997) interpreted the QPP as a bicriteria
path problem computing all non-dominated points in the objective
space, and finally selecting the non-dominated path with
minimum transmission time. The complexity of this algorithm
matches the complexity of the algorithm by Rosen et al. (1991).

However, Park et al. (2004) have pointed out two drawbacks in
the previous algorithms. The first concern is that the existing algo-
rithms must enumerate all non-dominated paths with different
capacities. Besides, the r value is only used to finally solve the
QPP. On the other hand, a Dijkstra (1959) labeling algorithm might
fail to solve QPP because this problem does not satisfy the optimal-
ity principle of dynamic programming. Thus, they design a
label-setting algorithm transforming in an implicit way the origi-
nal network such that any sub-path of the quickest path is also
optimal. The proposed algorithm runs in Oðrmþ rn log rnÞ time
and uses at most OðrðnþmÞÞ space, but it is shown that outper-
forms Martins and Santos (1997) algorithm (the most efficient
until this date) in a small experiment presented in their paper.

Recently, Calvete et al. (2012) proposed an algorithm combining
the simplicity of computing shortest paths with the explicit use in
the algorithm of the transmission time and the value of r. The time
and space complexities match the complexities of the algorithm by
Park et al. (2004). The authors claim that their algorithm performs
well when comparing it with Chen and Chin (1990), Martins and
Santos (1997) and Park et al. (2004) algorithms in an experiment
considering a small number of different values of the arc capacities.

Pascoal et al. (2006) provide a survey on the quickest path prob-
lem. Several authors have also developed some extensions to the
QPP problem. See for example (Chen, 1993; Chen and Hung,
1993; Lee and Papadopoulou, 1993; Chen, 1994; Chen and Hung,
1994; Xue, 1998; Xue et al., 1998; Kagaris et al., 1999; Calvete
and del-Pozo, 2003; Lin, 2003; Calvete, 2004;Rao, 2004; Pascoal
et al., 2005; Pascoal et al., 2007; Ruzika and Thiemann, 2012).

The contribution of this paper is a completely new algorithm
based on the fact that the s� t path with minimum transmission
time is a supported efficient solution of the bicriteria path problem.
This observation allow us to design a (ratio) labeling algorithm
running in Oðrmþ rn log nÞ time, and using OðnþmÞ space. The
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proposed algorithm avoids the two drawbacks pointed out by Park
et al. (2004). First, the algorithm enumerates the supported effi-
cient solutions of the bicriteria path problem until the optimal
solution of the QPP is determined, taking into account the value
of r. Secondly, the algorithm works in a Dijkstra fashion, that is,
only one application of a labeling method is performed, but this
is not related to the optimality principle of the classical shortest
path method.

In addition, Park et al. (2004) and Calvete et al. (2012) forgot a
third drawback in their algorithms: the enlarging of the original
network. Our algorithm does not need to enlarge implicitly or
explicitly the original network. Moreover, we have kept the term
O(log nr) (note that O(log n + log r) = O(log n) since r 6 m < n2)
in the time complexities of these algorithms to make clear the dif-
ference with our method, because in practice, this term has a com-
putational time and space price.

Furthermore, we show that our method outperforms the previ-
ous methods in the different extensive experiments that we carried
out. In particular, we have used the proposed algorithm to solve
the QPP in USA road networks to show the robustness and scalabil-
ity of the proposed algorithm. We note that only the algorithms of
Martins and Santos (1997) and the one proposed in this paper are
capable to solve the QPP in these networks. Any other algorithm
enlarging the original network becomes impractical in a personal
computer when it tries to solve the QPP on these instances.

The remaining sections of the paper are as follows: Section 2
introduces the QPP and describes some known results of the liter-
ature about of this problem. Section 3 contains the formulation of
the QPP as a parametric programming problem and the study of its
resolution. Section 4 proposes the ratio-labeling algorithm based
on the parametric programming problem. This section provides
the worst-case time and space complexity of this new algorithm.
In Section 5, the comments on the computational experiment com-
paring the performance of the proposed algorithm and other
known algorithms in the literature are given. Finally, Section 6 con-
tains some additional comments and future lines of research.

2. The QPP and some previous results

Consider a directed graph G ¼ ðV ;AÞ, where V ¼ f1; . . . ;n} is a
set of n nodes and A is an arc set with m elements. For each arc
ði; jÞ 2 A; cij is a nonnegative real number representing its lead time
and uij is a nonnegative real representing the capacity of the arc.
That is, uij represents the maximum number of items that can flow
from node i to node j through arc ði; jÞ per time unit. The lead time
cij is the time required for the items to traverse arc ði; jÞ. Note that
items arrive at node j within cij time units after being sent from
node i. Therefore, the required transmission time of r > 0 items
through arc ði; jÞ is cij þ r=uij.

For all nodes, we denote by C�i ¼ fj 2 V jðj; iÞ 2 Ag and by
Cþi ¼ fj 2 V jði; jÞ 2 Ag the sets of predecessor and successor nodes,
respectively.

The network has two different nodes from the rest: the origin
node s and the destination node t. Let i; j 2 V be two nodes of G ¼
ðV ;AÞ, so we define a directed path pij as a sequence hi1; ði1; i2Þ;
i2; . . . ; il�1; ðil�1; ilÞ; ili of nodes and arcs satisfying i1 ¼ i; il ¼ j and
for all 1 6 w 6 l� 1; ðiw; iwþ1Þ 2 A.

The lead time of a directed path p equals CðpÞ ¼
P
ði;jÞ2pcij and

the capacity of p is UðpÞ ¼minði;jÞ2pfuijg. Then, the transmission
time required to send r units of data through path pst is defined
as TðpstÞ ¼ CðpstÞ þ r=UðpstÞ.

Assumption 1 (w.l.o.g.). The network G contains a directed path
from the origin node s to any node i 2 V � fsg. When there is no path
in G to some node i, then this node can be removed from G since it
cannot lie on any s� t path.

Let P be the set of paths from s to t in G, then the QPP can be for-
mulated as finding a s� t path p�st ¼ arg minpst2PTðpstÞ. It is clear
that there exists an optimal solution of the QPP which is loopless
(without repeating nodes). Consider the next minsum–maxmin
bicriteria path problem minpst2PðCðpstÞ;1=UðpstÞÞ, where the criteria
max UðpstÞ appears as min 1=UðpstÞ. The objective space is the image
of the set of paths P under the previous objective functions.

Definition 1. A path p 2 P is called efficient if there does not exist
any p0 2 P with Cðp0Þ 6 CðpÞ and Uðp0ÞP UðpÞ with at least one
inequality being strict. The image ðCðpÞ;1=UðpÞÞ of p is called non-
dominated point.

Definition 2. Supported efficient paths are those efficient paths
that can be obtained as optimal paths of a weighted sum problem
minpst2Pðk1CðpstÞ þ k2=UðpstÞÞ for some k1 > 0 and k2 > 0. All other
efficient paths are called non-supported.

The supported non-dominated points lie on the lower-left bound-
ary of the convex hull of the objective space.

Since the weighted sum problem with k1 ¼ 1 > 0 and k2 ¼
r > 0 equals the QPP, we can rewrite the next result in Martins
and Santos (1997) as:

Theorem 1. Let pr
st 2 P be a quickest path for a given r 2 Rþ. Then,

pr
st is a supported efficient path.

This result was mentioned in Pelegrín and Fernández (1998),
but it never was used to design a quickest path algorithm. Now,
the question now is how to use this property. Martins and Santos
(1997) give an initial answer. Let PE # P be the set of supported effi-
cient paths and consider that this set is sorted such that
PE ¼ fp1; . . . ; prg where CðpiÞ 6 Cðpiþ1Þ and UðpiÞ 6 Uðpiþ1Þ, for any
i 2 f1; . . . ; r � 1g. Without loss of generality, we will assume that
CðpiÞ < Cðpiþ1Þ and UðpiÞ < Uðpiþ1Þ, for any i 2 f1; . . . ; r � 1g with
pi 2 PE.

In other words, we only need to compute all supported non-
dominated points of the objective space (in the worst case). If
two or more supported efficient paths have the same associated
supported non-dominated point in the objective space, it is clear
that it is only necessary to identify one of these paths in order to
solve the QPP. The result in Martins and Santos (1997) is:

Theorem 2.

(1) p1 is a quickest path for r 2 0; Cðp2Þ�Cðp1Þ
Uðp2Þ�Uðp1Þ

� Uðp2Þ � Uðp1Þ
� i

(2) pi with i 2 f2; . . . ; r � 1g is a quickest path for

r 2 CðpiÞ � Cðpi�1Þ
UðpiÞ � Uðpi�1Þ

� UðpiÞ � Uðpi�1Þ;
Cðpiþ1Þ � CðpiÞ
Uðpiþ1Þ � UðpiÞ

�

�Uðpiþ1Þ � UðpiÞ
�
; for any i 2 f2; . . . ; r � 1g:

(3) pr is a quickest path for r 2 Cðpr Þ�Cðpr�1Þ
Uðpr Þ�Uðpr�1Þ

� UðprÞ�Uðpr�1Þ;þ1
h i

.

Proof. (See Martins and Santos (1997)). �

The proof of this result given in Martins and Santos (1997) fol-
lows from elementary calculations to solve a system of inequali-
ties. An alternative proof is based on the observation that the
previous intervals correspond with the optimality intervals of the
parametric programming problem minpst2PðCðpstÞ þ h=UðpstÞÞ with
h P 0 (see Saaty and Gass, 1954). In our case, we need to solve
the previous parametric programming problem starting with
h ¼ 0 until h 6 r in order to solve the QPP. However, the novel
approach is that the second criterion is not linear in this parametric
programming problem. Therefore, in the next section, we study the
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