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a b s t r a c t

In this paper we consider nonlinear integer optimization problems. Nonlinear integer programming has
mainly been studied for special classes, such as convex and concave objective functions and polyhedral
constraints. In this paper we follow an other approach which is not based on convexity or concavity.
Studying geometric properties of the level sets and the feasible region, we identify cases in which an
integer minimizer of a nonlinear program can be found by rounding (up or down) the coordinates of a
solution to its continuous relaxation. We call this property rounding property. If it is satisfied, it enables
us (for fixed dimension) to solve an integer programming problem in the same time complexity as its
continuous relaxation. We also investigate the strong rounding property which allows rounding a solution
to the continuous relaxation to the next integer solution and in turn yields that the integer version can be
solved in the same time complexity as its continuous relaxation for arbitrary dimensions.

� 2014 Elsevier B.V. All rights reserved.

1. Integer nonlinear programming

It is well known that adding integrality constraints to
continuous optimization problems increases their complexity in
the majority of cases. A prominent example is linear programming,
which can be solved in polynomial time by interior point methods,
but becomes NP hard if integrality constraints are added. Integer
linear programming has been widely studied and developed into
a mature discipline. The theory developed in integer nonlinear
programming is much less mature. According to Hemmecke, Köppe,
Lee, and Weismantel (2010, chap. 15) who provide a recent over-
view, ‘‘integer nonlinear programming is still a very young field’’.

Integer nonlinear programming has been tackled by different
communities. In the context of global optimization the main focus
is to develop numerical procedures for solving nonlinear integer
problems. Also techniques from integer linear programming are
transferred to nonlinear integer programs. Results exist for integer
concave minimization (equivalently integer convex maximization)
which are based on the observation that a (quasi-)concave function
attains its minimum (if it exists) at an extreme point of the feasible
set. Hence an enumeration of all vertices of the convex hull of the
integer points would solve the problem. More efficient structures
based on total unimodularity for linear constraints allow
polynomial procedures. Results for integer concave minimization

can be found for example in De Loera, Hemmecke, Onn, and
Weismantel (2008). The methods used for convex integer minimi-
zation are different; early approaches include the extension of
branch and bound methods for linear integer programming (Gupta
& Ravindran, 1985) which has been extended for example to convex
quadratic integer programming (Buchheim, Caprara, & Lodi, 2012),
or an extension of the cutting plane technique of Kelley (1960).
More recently, outer approximation procedures have been sug-
gested (Bonami et al., 2008). Research has also been done for special
cases such as integer minimization of polynomial functions over
polyhedral sets where an FPTAS is possible (De Loera, Hemmecke,
Köppe, & Weismantel, 2006), of separable convex functions over
polyhedral sets where proximity results are provided in Hochbaum
and Shanthikumar (1990) or of strongly convex functions with
Lipschitz continuous gradients over polytopes (Baes, Del Pia,
Nesterov, Onn, & Weismantel, 2012). The idea of test sets for linear
integer optimization problems (Graver, 1975) was transferred to
some special cases of nonlinear integer optimization in Lee, Onn,
and Weismantel (2008). Boolean nonlinear optimization has been
considered for special types of problems, many of them motivated
by discrete or network optimization as for example the quadratic
assignment problem. An example for a recent approach can be
found in Buchheim and Rinaldi (2007).

The approach we suggest in this paper is based on the level sets
of the objective function: given a function f : Rn ! R the (sub-)level
set with respect to some level z 2 R is defined as L6ðzÞ :¼
fx 2 Rn : f ðxÞ 6 zg. Using level sets, the optimization problem
minff ðxÞ : x 2 Fg for some function f : Rn ! R and some set
F # Rn can be reformulated as minfz : L6ðzÞ \ F – ;; z 2 Rg, (where
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minf;g :¼ 1), i.e., the goal is to identify the smallest level for
which a feasible point exists. This approach is known as graphical
approach in linear programming.

In this paper we treat the integrality constraint for an optimiza-
tion problem minff ðxÞ : x 2 F; x 2 Zng in the same way, i.e., we
identify the smallest value z 2 R for which L6ðzÞ \ F \ Zn – ;. This
approach provides structural insight into the properties of an opti-
mal solution. In particular we investigate the rounding property, i.e.,
in which cases one can solve the integer version of a nonlinear
optimization problem by rounding (up or down) the coordinates
of a solution to its continuous relaxation. If the rounding property
holds for a problem, a finite dominating set is given by the set of all
integer points adjacent to an optimal solution of its continuous
relaxation. Therefore our results can be seen as proximity results
(similar to Hochbaum & Shanthikumar (1990)) as we identify cases
where kx� � �xk1 6 1 for an integer solution x� and a solution to the
relaxation �x. It is known that convexity does not imply such a
rounding property. However, we identify two different problem
classes that satisfy the rounding property. These problems need
not be convex and their objective functions not even continuous.
Our analysis is done by investigating the geometric structure of
the level sets.

The remainder of the paper is structured as follows. In the next
section we introduce the rounding property. In Sections 3 and 4 we
present two different geometric criteria which ensure the rounding
property. Both lead to classes of nonlinear integer optimization
problems which can be solved efficiently. The paper is ended by
some conclusions and further research questions.

2. The rounding property

We consider integer nonlinear optimization problems given by
some objective function f : Rn ! R and some feasible set F # Rn

ðIPÞ minff ðxÞ : x 2 F; x 2 Zng:

The continuous relaxation of ðIPÞ is given by

ðCPÞ minff ðxÞ : x 2 Fg:

Throughout the paper we assume that ðIPÞ has an optimal solu-
tion x� and that an optimal solution �x to the continuous relaxation
ðCPÞ is known.

We investigate in which cases rounding the continuous
minimizer �x yield an optimal solution to ðIPÞ. By rounding we mean
to round each coordinate of �x up or down to the respective next
integer, i.e., for x ¼ ðx1; . . . ; xnÞt 2 Rn we define

RoundðxÞ :¼ y 2 Zn : yi 2 fbxic; dxieg 8if g
as the set of integer points with rounded coordinates. For x 2 Zn we
have RoundðxÞ ¼ fxg and for x 2 Rn RoundðxÞ contains at most 2n

points. We also investigate when rounding �x to its closest integer
point yields an optimal solution for ðIPÞ. We therefore define xb e
to be the closest integer point to x, i.e., the coordinates xi are
rounded to the closest integer yi ¼ xib e for all i ¼ 1; . . . ;n using
any fixed rule, e.g. the round half up rule in order to break ties.

Now we can introduce the following two rounding properties
for nonlinear integer optimization problems given by some
objective function f and a feasible set F.

Definition 2.1. We say that ðf ; FÞ has the rounding property if for
any optimal solution �x to ðCPÞ there exists an optimal solution x� to
ðIPÞ, such that x� 2 Roundð�xÞ.

If the rounding property holds, it guarantees that if ðCPÞ is
polynomially solvable then ðIPÞ is also solvable in polynomial time
for any fixed dimension, namely by first solving ðCPÞ and then
testing the at most 2n points in Roundð�xÞ \ F. This approach yields
an efficient algorithm if the problem ðCPÞ can be solved efficiently

and the dimension n is rather small or if there are only a few points
in Roundð�xÞ \ F.

Note that the rounding property is trivially satisfied, but not at
all helpful for the special case of Boolean optimization problems
ðBPÞminff ðxÞ : x 2 F; x 2 f0;1gng for f : ½0;1�n ! R, since enumer-
ating the at most 2n feasible 0/1 vectors is always an (inefficient)
option to solve the problem.

In order to tackle also problems of type ðBPÞ, and to be more
efficient when solving problems of type ðIPÞ, we introduce the
strong rounding property.

Definition 2.2. We say that ðf ; FÞ has the strong rounding property
if for any optimal solution �x to ðCPÞ there exists an optimal solution
x� to ðIPÞ, such that x� ¼ �xb e.

The strong rounding property guarantees that if ðCPÞ is polyno-
mially solvable then ðIPÞ is also solvable in polynomial time not
only for fixed dimension.

Note that a function may have the (strong) rounding property
without being continuous. However, continuity might be helpful
in order to solve ðCPÞ. In the next two sections we derive two dif-
ferent classes of problems (specified by properties of f and F) satis-
fying the rounding property. To do so, the following reformulation
of the (strong) rounding property is helpful.

Lemma 2.1.

(i) ðf ; FÞ has the rounding property () for any optimal solution �x
to ðCPÞ and for all x 2 Zn \ F we have that
L6ðf ðxÞÞ \ F \ Roundð�xÞ– ;.

(ii) ðf ; FÞ has the strong rounding property () for any optimal
solution �x to ðCPÞ and for all x 2 Zn \ F we have that
�xb e 2 L6ðf ðxÞÞ \ F.

Proof.

(i) ‘‘)’’ Let �x be an optimal solution to ðCPÞ. Since ðf ; FÞ has the
rounding property there exists x� 2 Roundð�xÞ optimal to ðIPÞ.
This means that x� 2 F and f ðxÞP f ðx�Þ for any x 2 Zn \ F,
hence x� 2 L6ðf ðxÞÞ for all x 2 Zn \ F and therefore
L6ðf ðxÞÞ \ F \ Roundð�xÞ– ;.
‘‘(’’ Let �x be optimal for ðCPÞ. If L6ðf ðxÞÞ \ F \ Roundð�xÞ – ;
for any x 2 Zn \ F there exists a y 2 Roundð�xÞ \ F such that
f ðyÞ 6 f ðxÞ for any x 2 Zn \ F. This means one of the points
in Roundð�xÞ \ F is optimal for ðIPÞ.

(ii) ‘‘)’’ If ðf ; FÞ has the strong rounding property, x� :¼ �xb e is an
optimal solution to ðIPÞ and hence contained in L6ðf ðxÞÞ for
all x 2 Zn \ F.
‘‘(’’ Let �x be optimal for ðCPÞ. If �xb e 2 L6ðf ðxÞÞ for any
x 2 Zn \ F we obtain that f ð �xb eÞ 6 f ðxÞ for any x 2 Zn \ F,
hence �xb e is optimal for ðIPÞ. h

3. Cross-shaped level sets

To start with, we recall the definition of a star-shaped set: a set
M # Rn is called star-shaped if a point x0 2 M exists, such that for
any y 2 M the line segment kx0 þ ð1� kÞy; k 2 ½0;1�, is contained
in M. Boltyanski, Martini, and Soltan (1996) generalized this defini-
tion by introducing d-star-shaped sets for any norm d : Rn ! R as
follows: for a; b 2 Rn denote by

½a; b�d :¼ fx 2 Rn : dða; xÞ þ dðx; bÞ ¼ dða; bÞg

the d-segment of a and b with respect to the norm d. Then a set
M # Rn is called d-star-shaped if a point x0 2 M exists, such that
for any y 2 M the d-segment ½x0; y�d is contained in M.
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