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a b s t r a c t

We formulate the multiple knapsack assignment problem (MKAP) as an extension of the multiple
knapsack problem (MKP), as well as of the assignment problem. Except for small instances, MKAP is hard
to solve to optimality. We present a heuristic algorithm to solve this problem approximately but very
quickly. We first discuss three approaches to evaluate its upper bound, and prove that these methods
compute an identical upper bound. In this process, reference capacities are derived, which enables us to
decompose the problem into mutually independent MKPs. These MKPs are solved euristically, and in
total give an approximate solution to MKAP. Through numerical experiments, we evaluate the perfor-
mance of our algorithm. Although the algorithm is weak for small instances, we find it prospective for
large instances. Indeed, for instances with more than a few thousand items we usually obtain solutions
with relative errors less than 0.1% within one CPU second.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

This article is concerned with the multiple knapsack assignment
problem (MKAP), as an extension of the multiple knapsack problem
(MKP, Kellerer, Pferschy, & Pisinger, 2004; Martello & Toth, 1990;
Pisinger, 1999), as well as of the assignment problem (Burkard,
Dell’Amico, & Martello, 2009; Kuhn, 2005; Pentico, 2007), where
we are given a set of n items N ¼ f1;2; . . . ;ng to be packed into
m possible knapsacks M ¼ f1;2; . . . ;mg. As in ordinary MKP, by
wj and pj we denote the weight and profit of item j 2 N
respectively, and the capacity of knapsack i 2 M is ci. However,
items are divided into K mutually disjoint subsets of items
Nk ðk ¼ 1; . . . ;KÞ, thus we have N ¼ [K

k¼1 Nk;nk :¼ jNkj, and

n ¼
PK

k¼1 nk. The problem is to determine the assignment of
knapsacks to each subset, and fill knapsacks with items in that
subset, so as to maximize the total profit of accepted items. To
formulate this mathematically, we introduce binary decision
variables xij and yik such that xij ¼ 1 if item j is included in
knapsack i, and xij ¼ 0 otherwise. Also, yik ¼ 1 if we assign
knapsack i to subset Nk, and yik ¼ 0 otherwise. Then, we have the
following.

MKAP:

maximize zðx; yÞ :¼
Xm

i¼1

XK

k¼1

X
j2Nk

pjxij; ð1Þ

subject to
X
j2Nk

wjxij 6 ciyik; i ¼ 1; . . . ;m; k ¼ 1; . . . ;K; ð2Þ

Xm

i¼1

xij 6 1; j ¼ 1; . . . ;n; ð3Þ

XK

k¼1

yik 6 1; i ¼ 1; . . . ;m; ð4Þ

xij; yik 2 f0;1g; 8i; j; k: ð5Þ

Here, (1) gives the total profit of items accepted, and (2) and (3)
represent the same conditions as in MKP with respect to each Nk

and the set of knapsacks assigned to this subset of items. Con-
straint (4) means that each knapsack can be assigned to at most
one subset.

Such a problem may be encountered by a marine shipping com-
pany in drawing up a cargo plan. Here items are to be shipped to
respective destinations, and we have m ships for this transporta-
tion. Let Nk represent the set of items destined to the kth destina-
tion, and ci is the capacity of ship i. Cargo planning is to allocate
ships to destinations, and for each k load the items in Nk to the allo-
cated ships.
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MKAP is NP-hard, since the special case of K ¼ 1 is simply an
MKP, which is already NP-hard. For recent works on MKP, readers
are referred to Chekuri and Khanna (2006), Dawande, Kalagnanam,
Keskinocak, Ravi, and Salman (2000), and Lalami, Elkihel, Baz, and
Boyer (2012). Since MKAP described as above is a linear 0–1 pro-
gramming problem, small instance of this problem may be solved
using free or commercial MIP (mixed integer program) solvers
such as Gurobi (2012). However, as we shall see later, solvers can
solve only small instances within a reasonable CPU time.

Instead of solving MKAP exactly, we present an approach to
solve larger instances approximately, but very quickly. More spe-
cifically, we first apply the Lagrangian relaxation to (2), and obtain
an upper bound quickly. Here, we show that only one multiplier
suffices to eliminate these mK inequalities, and the obtained upper
bound is shown to be identical to the upper bound derived by the
continuous (LP) relaxation of MKAP. In addition, we present an effi-
cient way to solve this LP problem by decomposing it into K inde-
pendent continuous knapsack problems.

We exploit the result of this computation to derive a heuristic
solution, which gives a lower bound to MKAP. Through numerical
experiments on a series of randomly generated instances, we evaluate
the quality (CPU time and relative errors) of the obtained solutions.

2. Upper bound

To discuss upper bounds, without much loss of generality, we
assume the following.

A1: Problem data pj;wj ðj ¼ 1;2; . . . ;nÞ, and ci ði ¼ 1;2; . . . ;mÞ
are all positive integers.

A2: Within each subset, items are arranged in non-increasing
order of profit per weight, i.e., for all k ¼ 1; . . . ;K the follow-
ing is satisfied:

8j; j0 2 Nk; j < j0 ) pj=wj P pj0=wj0 :

2.1. Lagrangian relaxation

With non-negative multipliers kik associated with (2), the
Lagrangian relaxation (Fisher, 1981) of MKAP is as follows.

LMKAP(k):

maximize Lðk; x; yÞ :¼
X

i

X
k

X
j2Nk

ðpj � kikwjÞxij þ
X

i

X
k

cikikyik;

subject to ð3Þ—ð5Þ:

With k P 0 fixed, this problem is easily solved, and the optimal
objective value is

zðkÞ ¼
X

k

X
j2Nk

max
i
fðpj � kikwjÞþg þ

X
i

maxkfkikgci; ð6Þ

where ð�Þþ :¼maxf�;0g. Then, zðkÞ is a piecewise linear and convex
function of k. Moreover, if we consider

Lagrangian DUAL:

minimize zðkÞ subject to k P 0;

we have the following.

Theorem 1. There exists an optimal solution ky ¼ ðkyikÞ to Lagrangian
DUAL such that kyik is constant over i and k, i.e., kyik � ky.

Proof. Let k ¼ ðkikÞ be a feasible solution to the above problem, and
put kyðiÞ :¼ arg maxkfkikg. Then, for all k we have kik 6 kikyðiÞ. Since
ðpj � kikwjÞþ is a non-increasing function of kik, this is minimized
at kik ¼ kikyðiÞ, for all k. Thus, in the Lagrangian dual we can assume
that kik � ki, i.e., constant over k.

Next, let ky :¼minifkig. Then, we have
maxifðpj � kiwjÞþg ¼ ðpj � kywjÞ

þ
, and thus

zðkÞ ¼
X

k

X
j2Nk

ðpj � kywjÞ
þ þ

X
i

kici;

which is minimized at ki � ky. h

Remark 1. Due to the fact that the coefficients of (2) are identical
for all i, this is obtained as an extension of the known result for
MKP (i.e., K ¼ 1, Martello & Toth, 1990, pp. 164–165). See also
(Yamada & Takeoka, 2009).

From this theorem, to obtain ky it suffices to minimize the one-
dimensional

zðkÞ ¼
X

k

X
j2Nk

ðpj � kwjÞþ þ kC ð7Þ

over k P 0, where C is the total knapsack capacity, i.e.,

C :¼
X

i

ci: ð8Þ

At differentiable k P 0, we have

dzðkÞ=dk ¼ C �
X

k

X
j2NkðkÞ

wj; ð9Þ

with NkðkÞ :¼ fj 2 Nkjpj � kwj > 0g. Thus, zðkÞ is a piecewise-linear,

convex function of k, and the optimal solution ky to the Lagrangian
dual is characterized by

k ? ky ) C �
XK

k¼1

X
j2NkðkÞ

wj ? 0: ð10Þ

Such a ky can be found by the standard binary search method, and
we obtain the corresponding Lagrangian upper bound zL :¼ zðkyÞ.

2.2. Continuous relaxation

By replacing the 0–1 condition (5) with non-negativity require-
ments, we obtain the continuous relaxation of MKAP as follows.

CMKAP:

maximize ð1Þ;
subject to ð2Þ—ð4Þ and

xij P 0; yik P 0; 8i; j; k:

Let zC be the optimal objective value to this problem. This gives
the upper bound by the continuous relaxation of MKAP. Then, the
following states the relation between the Lagrangian and continu-
ous relaxations.

Theorem 2. Upper bounds derived from the Lagrangian and
continuous relaxations are identical, i.e., zL ¼ zC .

We note that the coefficient matrix of constraints (3) and (4) in
LMKAP(k) is totally unimodular. Then, this theorem follows
immediately from Theorem 10.3 (p. 172) of Wolsey (1998).

2.3. Continuous relaxation: an alternative approach

Instead of applying LP algorithms such as the simplex method
directly, CMKAP may be solved efficiently as follows. Let
uk :¼

Pm
i¼1 ciyik and xj :¼

Pm
i¼1 xij. Here, uk is the knapsack capacity

allocated (from the total knapsack capacity C) to subset Nk. Then,
adding (2) for i ¼ 1; . . . ;m, the problem is decomposed into K
independent subproblems for each subset as follows.

S. Kataoka, T. Yamada / European Journal of Operational Research 237 (2014) 440–447 441



Download English Version:

https://daneshyari.com/en/article/478131

Download Persian Version:

https://daneshyari.com/article/478131

Daneshyari.com

https://daneshyari.com/en/article/478131
https://daneshyari.com/article/478131
https://daneshyari.com

