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a b s t r a c t

The present work is intended as a first step towards applying semidefinite programming models and
tools to discrete lot-sizing problems including sequence-dependent changeover costs and times. Such
problems can be formulated as quadratically constrained quadratic binary programs. We investigate sev-
eral semidefinite relaxations by combining known reformulation techniques recently proposed for gen-
eric quadratic binary problems with problem-specific strengthening procedures developed for lot-sizing
problems. Our computational results show that the semidefinite relaxations consistently provide lower
bounds of significantly improved quality as compared with those provided by the best previously pub-
lished linear relaxations. In particular, the gap between the semidefinite relaxation and the optimal inte-
ger solution value can be closed for a significant proportion of the small-size instances, thus avoiding to
resort to a tree search procedure. The reported computation times are significant. However improve-
ments in SDP technology can still be expected in the future, making SDP based approaches to discrete
lot-sizing more competitive.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Capacitated lot-sizing arises in industrial production planning
whenever changeover operations such as preheating, tool changing
or cleaning are required between production runs of different
products on a machine. The amount of the related changeover
costs usually does not depend on the number of products pro-
cessed after the changeover. Thus, to minimize changeover costs,
production should be run using large lot sizes. However, this gen-
erates inventory holding costs as the production cannot be syn-
chronized with the actual demand pattern: products must be
held in inventory between the time they are produced and the time
they are used to satisfy customer demand. The objective of lot-
sizing is thus to reach the best possible trade-off between
changeover and inventory holding costs while taking into account
both the customer demand satisfaction and the technical
limitations of the production system.

An early attempt at modelling this trade-off can be found in
Wagner and Whitin (1958): the authors consider the problem of

planning production for a single product on a single resource with
an unlimited production capacity. Since this seminal work, a large
part of the research on lot-sizing problems has focused on model-
ling operational aspects in more detail to answer the growing
industry need to solve more realistic and complex production plan-
ning problems. An overview of recent developments in the field of
modelling industrial extensions of lot-sizing problems is provided
in Jans and Degraeve (2008).

In the present paper, we focus on one of the variants of lot-siz-
ing problems mentioned in Jans and Degraeve (2008), namely the
multi-product single-resource discrete lot-sizing and scheduling
problem or DLSP. As defined in Fleischmann (1990) and Jans and
Degraeve (2008), several key assumptions are used in the DLSP
to model the production planning problem:

� A set of products is to be produced on a single capacitated pro-
duction resource.
� A finite time horizon subdivided into discrete periods is used to

plan production.
� Demand for products is time-varying (i.e. dynamic) and deter-

ministically known.
� At most one product can be produced per period (small bucket

model) and the facility processes either one product at full
capacity or is completely idle (discrete or all-or-nothing
production policy).
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� Costs to be minimized are the inventory holding costs and the
changeover costs.

In the DLSP, it is assumed that a changeover between two pro-
duction runs for different products results in a changeover cost
and/or a changeover time. Changeover costs and times can depend
either on the next product only (sequence-independent case) or on
the sequence of products (sequence-dependent case). Significant
changeover times which consume scarce production capacity tend
to further complicate the problem. We consider here the DLSP with
sequence-dependent changeover costs and times (denoted DLSPSD
in what follows) and assume that the changeover times are ex-
pressed as integer numbers of planning periods and satisfy the tri-
angular inequality.

Sequence-dependent changeover costs and times are men-
tioned in Jans and Degraeve (2008) as one of the relevant opera-
tional aspects to be incorporated into lot-sizing models.
Moreover, a significant number of real-life lot-sizing problems
involving sequence-dependent changeover costs and times have
been recently reported in the academic literature: see among oth-
ers (Dastidar & Nagi, 2005) for an injection moulding process, Silva
and Magalhaes (2006) for a textile fibre industry or (Ferreira, Clark,
Almada-Lobo, & Morabito, 2012) for soft drink production.

A wide variety of solution techniques from the Operations Re-
search field have been proposed to solve lot-sizing problems: the
reader is referred to (Buschkühl, Sahling, Helber, & Tempelmeier,
2010; Jans & Degraeve, 2007) for recent reviews on the corre-
sponding literature. The present paper belongs to the line of re-
search dealing with exact solution approaches, i.e. aiming at
providing guaranteed optimal solutions for the problem. A large
amount of existing solution techniques in this area consists in for-
mulating the problem as a mixed-integer linear program (MILP)
and in relying on a Branch & Bound type procedure to solve the ob-
tained MILP. However the efficiency of such a procedure strongly
depends on the quality of the lower bounds used to evaluate the
nodes of the search tree. Much research has been devoted to the
polyhedral study of lot-sizing problems and tight MILP formula-
tions are now available for many variants of lot-sizing problems:
see e.g. (Pochet & Wolsey, 2006) for a general overview of the re-
lated literature and (Belvaux & Wolsey, 2001; Eppen & Martin,
1987; Gicquel, Minoux, & Dallery, 2009; van Eijl & van Hoesel,
1997) for contributions focusing specifically on the DLSP.

Nevertheless, even if substantial improvements of the lower
bounds can be obtained by using these MILP strengthening tech-
niques, there are still cases where the obtained linear reformula-
tion of the DLSPSD provides lower bounds of rather weak quality
(see e.g. the numerical results reported in Gicquel et al. (2009)).
These difficulties thus motivate the study of more powerful formu-
lations for the problem. One such possibility consists in using a
semidefinite reformulation of the problem rather than the stan-
dard linear reformulation used in MILP-based solution approaches.

Semidefinite programming (SDP) is a recent area of mathemat-
ical programming which can broadly be described as the extension
of linear programming from the space of real vectors to the space
of symmetric matrices: variables of the optimization problem are
semidefinite positive matrices instead of positive real vectors.
Since the seminal papers (Goemans & Williamson, 1995; Lovàsz
& Schrijver, 1991) were published, semidefinite programming
and its use to solve quadratic optimization problems have at-
tracted a keen interest among researchers. Thanks to this, there
is now a rather good knowledge on how to efficiently reformulate
a quadratic optimization problem into a semidefinite program (see
e.g. Roupin, 2004). Semidefinite programming has thus proved
succesful at providing tight bounds for some well known quadratic
binary problems such as the quadratic knapsack problem or
the quadratic assignment problem (see e.g. Helmberg, Rendl, &

Weismantel, 2000; Povh & Rendl, 2009; Zhao, Kharisch, Rendl, &
Wolkovicz, 1998). However, applications of semidefinite program-
ming in the field of industrial production management are still
scarce (see Anjos, Kennings, & Vannelli, 2005; Mhanna & Jabr,
2012; Skutella, 2001 for noticeable exceptions) and to the best of
our knowledge, there is no previous attempt at using semidefinite
programming to solve lot-sizing problems. The purpose of the
present paper is thus to provide a first assessment of the potential
of semidefinite programming based approaches to solve discrete
lot-sizing problems.

The main contributions of the present paper are thus threefold.
First we introduce a new quadratically constrained quadratic bin-
ary programming formulation for the DLSPSD. Second, we propose
to compute lower bounds for the DLSPSD using a semidefinite
reformulation of the problem rather than a standard linear refor-
mulation. Finally we present a cutting-plane generation algorithm
based on a semidefinite programming solver to tighten the initial
semidefinite relaxation. The results of the computational experi-
ments carried out on small to medium-size instances show that
the proposed approach provides lower bounds of significantly im-
proved quality as compared to those provided by the best previ-
ously published linear reformulations, especially for the instances
featuring a product family structure. Furthermore, for a high pro-
portion of the small-size instances, the residual gap between the
semidefinite relaxation and the optimal integer solution value is
entirely closed so that there would be no need to resort to a Branch
& Bound procedure to obtain the optimal integer solution. How-
ever, due to the limitations of available state-of-the art semidefi-
nite programming solvers, these tight lower bounds are obtained
at the expense of significant computation times.

The paper is organized as follows. We introduce in Section 2 a
quadratically constrained quadratic binary programming (QCQBP)
formulation for the DLSPSD. We then explain in Section 3 how this
QCQBP can be reformulated as a semidefinite program and how
lower bounds can be obtained for the DLSPSD by semidefinite
relaxation. To achieve this, we not only exploit reformulation and
strengthening techniques recently proposed in the SDP literature
for generic (0–1) quadratic binary problems but also use prob-
lem-specific information such as the polyhedral representation of
single-product discrete lot-sizing problems. Section 4 is devoted
to the description of the valid inequalities used to strengthen the
initial semidefinite relaxation of the problem and to the presenta-
tion of the cutting-plane generation algorithm implemented to add
these valid inequalities iteratively into the initial formulation.
Some computational results involving a comparison with the best
previously published MILP strengthening techniques are then pre-
sented in Section 5.

2. QCQBP formulation of the DLSPSD

We first discuss a new formulation of the DLSPSD as a quadrat-
ically constrained quadratic binary (QCQBP) program. The se-
quence-dependent nature of the changeover costs namely leads
to the introduction of a series of quadratic terms in the objective
function. Moreover, inequalities involving quadratic terms are
needed to ensure that the positive changeover times between dif-
ferent production runs for different products are respected.

2.1. Initial QCQBP formulation

We wish to plan production for a set of products denoted
p ¼ 1; . . . ; P to be processed on a single production machine over
a planning horizon involving t ¼ 1; . . . ; T periods. Product p ¼ 0
represents the idle state of the machine and period t ¼ 0 is used
to describe the initial state of the production system.
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