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a b s t r a c t

The strategic design of a robust supply chain has to determine the configuration of the supply chain so
that its performance remains of a consistently high quality for all possible future conditions. The current
modeling techniques often only consider either the efficiency or the risk of the supply chain. Instead, we
define the strategic robust supply chain design as the set of all Pareto-optimal configurations considering
simultaneously the efficiency and the risk, where the risk is measured by the standard deviation of the
efficiency. We model the problem as the Mean–Standard Deviation Robust Design Problem
(MSD-RDP). Since the standard deviation has a square root expression, which makes standard maximiza-
tion algorithms based on mixed-integer linear programming non-applicable, we show the equivalency to
the Mean–Variance Robust Design Problem (MV-RDP). The MV-RDP yields an infinite number of mixed-
integer programming problems with quadratic objective (MIQO) when considering all possible tradeoff
weights. In order to identify all Pareto-optimal configurations efficiently, we extend the branch-
and-reduce algorithm by applying optimality cuts and upper bounds to eliminate parts of the infeasible
region and the non-Pareto-optimal region. We show that all Pareto-optimal configurations can be found
within a prescribed optimality tolerance with a finite number of iterations of solving the MIQO. Numer-
ical experience for a metallurgical case is reported.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

For any corporation involved in delivering goods to their cus-
tomers and operating in a competitive environment, the design of
an efficient supply chain is of critical importance. A supply chain is
defined as a set of three or more entities (organizations or individuals)
directly involved in the upstream and downstream flows of products,
services, finances, and/or information from a source to a customer
(Mentzer et al., 2001). A supply chain encompasses the acquisition
of raw material from suppliers, the transformation of materials into
intermediate and finished products, the storage of materials or
products, and the distribution of the finished products to
customers.

The planning decisions with respect to a supply chain range
from short-term decisions, such as vehicle dispatching and routing,
to long-term decisions such as the definition of the corporate mis-
sion. Depending on their permanence, the decisions are typically
divided into strategic, tactical, and operational planning. The goal

of the strategic planning is to determine the configuration of the
supply chain so that its long-term performance over the planning
horizon is maximized. Given the permanence of the configuration
decisions, the future conditions during the planning horizon can-
not be known with certainty. Configuring a supply chain that will
perform efficiently in a variety of unknown future environments
belongs to the class of decision problems known as strategic plan-
ning under uncertainty. The supply chain configuration itself is
called a robust design. The uncertainty of the future is usually
modeled using scenarios (Peterson, Graeme, & Stephen, 2003). In
the strategic design of supply chains there may be many thousands
of parameters whose value is not known with certainty at the deci-
sion time. Even if the probability distributions of the individual
parameters were known, constructing a joint probability distribu-
tion function for the scenarios in function of the parameters is not
possible. In the following approach we model the uncertainty of
the future by means of scenarios whose probabilities are assumed
to be known. Scenarios may be grouped in classes or sets, such as
best-guess, best case, and worst case scenarios, or represent high-
impact, low-probability events. A robust (supply chain) design is
the configuration that will perform efficiently for all these
scenarios.
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Multiple definitions of robust design exist in the literature. In
the area of strategic planning under uncertainty, related notions
such as agility, adaptability, responsiveness, resilience, and flexibil-
ity also have been used. A recent survey of strategic supply chain
planning and robust design is given in Klibi, Martel, and Guitouni
(2010). One distinction they make with respect to robust design
is between model, algorithm, and solution robustness. A design is
defined as ‘‘model robust’’ if this design is ‘‘almost’’ feasible when
the input data varies (Aghezzaf, 2005; Leung & Wu, 2004; Mulvey,
Vanderbei, & Zenios, 1995; Yu & Li, 2000). A design is called ‘‘algo-
rithm robust’’ if the algorithm performance is not affected by the
presence of noise in the data. Sorensen (2004) developed an
approximation of the number of evaluations in local search algo-
rithms that is needed to find a candidate solution and considered
the increased number of evaluations required by the presence of
noise in the data. A design is called solution robust if the solution
values remain ‘‘close’’ to each other when the input data changes
(Aghezzaf, 2005; Leung & Wu, 2004; Mulvey et al., 1995; Yu & Li,
2000). Solution robustness is the focus of this research. Solution
configuration robustness requires that the same (robust) supply
chain configuration is used in the different scenarios and measures
the variability of the objective function value (profit) over the dif-
ferent scenarios.

A second distinction in the robust design area is the modeling
technique. One of the modeling techniques commonly used is sto-
chastic programming. In stochastic programming models the
uncertainty is assumed to be known and often modeled as a set
of scenarios with known probabilities. The strategic supply chain
design often uses a two-stage model, where the first stage decides
the supply chain configuration and the second stage treats material
flows and inventories as recourse variables after the uncertainty
has been resolved. The objective is to maximize the expected value
of the profit of all scenarios, i.e., the goal is to find an average or
‘‘median’’ type of solution. Ahmed and Sahinidis (2003) solve a sto-
chastic capacity expansion problem with a given set of scenarios.
Santoso, Ahmed, Goetschalckx, and Shapiro (2005) propose the
use of a random sampling strategy, the sample average approxima-
tion scheme, to solve large-scale stochastic supply chain design
problems. These approaches focus on the solution configuration
and its expected efficiency and do not explicitly consider the
robustness of the solution value, which may vary widely between
the different scenarios.

A second modeling technique used for robust design is the fuzzy
or possibilistic linear programming approach. When some param-
eters cannot be estimated deterministically, fuzzy logic can be a
tool to model the uncertainty. Kabak and Ülengin (2011) propose
a possibilistic linear programming model to optimize the strategic
planning decisions where the uncertainty of the demand forecasts,
yield rates, cost and capacities are modeled as fuzzy parameters.
Pishvaee and Torabi (2010) propose a multi-objective possibilistic
programming model for the closed-loop supply chain network de-
sign under uncertainty. Two objectives, the minimization of the to-
tal cost and the total tardiness, are considered in their work.
Pishvaee, Razmi, and Torabi (2012) consider social responsibility
in the supply chain network design problem and propose a robust
possibilistic programming to optimize the configuration of supply
chain network with respect to both social and economic aspects.

A third modeling technique used for robust design is the robust
optimization approach. This approach assumes that the probabili-
ties of the scenarios are not available and the objective is to either
minimize the maximum cost or to maximize the minimum profit
over all possible scenarios (Atamtürk & Zhang, 2007). If a particu-
larly bad scenario is possible, even though it has a very low prob-
ability of occurrence, then this scenario may determine the supply
chain configuration. The goal of this approach is to find a ‘‘center’’
type of solution.

A fourth approach assumes that the probabilities of scenarios
are known and considers the tradeoff between expected value,
solution robustness, and other measures such as environmental
factors (Amin & Zhang, 2013; Tang, Zhang, & Xu, 2013; Wang,
Lai, & Shi, 2011), flow time or lost sale (Liu & Papageorgiou,
2013). The solution robustness is evaluated either based on its var-
iance (Markowitz, 1991; Mulvey et al., 1995) or absolute deviation
(Leung & Wu, 2004; Yu & Li, 2000). These models consider the
portfolio selection in which the decision variables are continuous.
Recently, different measurements of the solution robustness are
proposed for the strategic supply chain design problems including
the variance (Azaron, Brown, Tarim, & Modarres, 2008; Azaron,
Furmans, & Modarres, 2008; Azaron et al., 2010; You, Wassick, &
Grossmann, 2009), the financial risk (Azaron, Brown et al., 2008;
Azaron, Furmans et al., 2008; Guillén, Mele, Bagajewics, Espuña,
& Puigjaner, 2005; You et al., 2009), the variance index (You
et al., 2009), and the downside risk (Azaron, Brown et al., 2008;
Azaron, Furmans et al., 2008; Azaron et al., 2010; You et al.,
2009). Several solution techniques, which improve the solution
time of identifying a robust supply chain design for a given tradeoff
weight between the efficiency and the solution robustness, are
developed. However, identifying all Pareto-optimal configurations
efficiently is still a challenging problem since there are an infinite
number of possible tradeoff weights between the efficiency and
the solution robustness.

In the following we consider solution configuration robustness.
In other words, the supply chain configuration has to be chosen be-
fore any scenario is realized and the solution robustness is defined
as the variability of the solution value between the scenarios. Spe-
cifically, the objective is to find all Pareto-optimal configurations
with respect to the expected value and standard deviation of the
scenario profits. The use of the standard deviation of the scenario
profits instead of the variance allows a more intuitive interpreta-
tion and comparison between configurations and a direct relation-
ship between the coefficient of variation of the solution value and
the objective function. The coefficient of variation is dimensionless
which allows for the specification of a dimensionless allowable tol-
erance gap and also avoids dependencies on the currency units of
the profit or cost.

If all Pareto-optimal configurations can be identified, we can
plot these configurations in a risk analysis graph with the ex-
pected value on the horizontal axis and the standard deviation
on the vertical axis so decision makers can choose the configura-
tion based on their preferences. Fig. 1 shows a motivational
example of a mean–standard deviation risk analysis graph for a
tutorial supply chain network design problem. Three Pareto-opti-
mal configurations exist in this example. Compared to other
existing approaches, the stochastic programming approach will
find the configuration with maximum expected profit value and
maximum standard deviation, which is generated by the configu-
ration (‘‘010011’’). If the decision maker is risk-seeking, this con-
figuration will be selected. The robust optimization approach
using the max–min profit objective will select the configuration
with minimum standard deviation which is the configuration
(‘‘110110’’). If the decision maker is extremely risk-averse then
this configuration will be selected. Neither approach will identify
the configuration (‘‘011011’’) even though it is also Pareto-opti-
mal. In this research, we will develop an efficient methodology
to identify all Pareto-optimal configurations and to compute the
range of the coefficient of variation for which each of them is
dominant. A particular configuration may be dominant for a large
fraction of the range of the coefficient of variation, but it may be
different from the configurations found by stochastic optimiza-
tion and robust optimization. The final selection of the supply
chain configuration to be implemented can then be based on
the risk tradeoff of the decision maker and on other
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