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a b s t r a c t

Game theoretic analysis of queueing systems is an important research direction of queueing theory. In
this paper, we study the service rate control problem of closed Jackson networks from a game theoretic
perspective. The payoff function consists of a holding cost and an operating cost. Each server optimizes its
service rate control strategy to maximize its own average payoff. We formulate this problem as a non-
cooperative stochastic game with multiple players. By utilizing the problem structure of closed Jackson
networks, we derive a difference equation which quantifies the performance difference under any two
different strategies. We prove that no matter what strategies the other servers adopt, the best response
of a server is to choose its service rates on the boundary. Thus, we can limit the search of equilibrium
strategy profiles from a multidimensional continuous polyhedron to the set of its vertex. We further
develop an iterative algorithm to find the Nash equilibrium. Moreover, we derive the social optimum
of this problem, which is compared with the equilibrium using the price of anarchy. The bounds of the
price of anarchy of this problem are also obtained. Finally, simulation experiments are conducted to dem-
onstrate the main idea of this paper.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Queueing theory is a well-established methodology in the soci-
ety of operations research. It can provide a fundamental tool to
study the dynamics of many service systems with resource
constraints, such as computer systems, communication networks,
production systems, and transportation systems. In a queueing
system, there widely exists the phenomena of the competition
for limited service resources among customers. Thus, the concept
of game theory provides a promising research direction for queue-
ing theory. Starting from the pioneering work by Naor in 1969
(Naor, 1969), the game theoretic study of queueing systems at-
tracts considerable research attention in the literature (Altman,
Boulogne, El-Azouzi, Jimenez, & Wynter, 2006; Basar & Olsder,
1999; Debo, Parlour, & Rajan, 2012; Guo & Hassin, 2011; Hassin
& Haviv, 2003; Xia & Jia, 2013).

According to the categorization standard of game theory, the
game theoretic problem in queueing systems is usually a

multi-player, stochastic, and non-cooperative game. Moreover,
the game theory in queueing systems has some features different
from the traditional game theory. First, there are two-level compe-
titions in queueing systems. The first-level competition exists
among servers, where servers adjust their strategies to compete
for better service profits. The second-level competition exists
among customers, where customers compete for more chance to
be served. Second, the traditional game theory ignores the net-
working characteristics of queueing systems, i.e., the servers are
interconnected and the customers transit among servers. By utiliz-
ing such interconnection structure, it is promising to develop effi-
cient approaches to study the game theory in queueing systems.
Perturbation analysis is a successful example and it utilizes the
networking characteristics to efficiently estimate the performance
gradient or difference of queueing systems (Cao, 1994, 2007;
Glasserman, 1991; Gong & Ho, 1987; Ho & Cao, 1991; Leahu, Heid-
ergott, & Hordijk, 2013; Yao & Cassandras, 2012). In this paper, we
will study how to utilize the similar idea of perturbation analysis to
analyze the game theoretic problem among servers in a closed
Jackson network.

Service rate control is a classical optimization problem in
queueing theory (Gross, Shortle, Thompson, & Harris, 2008; Stid-
ham, 2011). The goal of service rate control is to identify a set of
optimal service rates of all servers to maximize the system average
performance. This optimization problem is intensively studied in

http://dx.doi.org/10.1016/j.ejor.2014.01.038
0377-2217/� 2014 Elsevier B.V. All rights reserved.

q This work was supported in part by the National Natural Science Foundation of
China (61203039, U1301254), the National 111 International Collaboration Project
(B06002), the Specialized Research Fund for the Doctoral Program of Higher
Education (20120002120009).
⇑ Tel.: +86 10 62793029.

E-mail address: xial@tsinghua.edu.cn

European Journal of Operational Research 237 (2014) 546–554

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.01.038&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2014.01.038
mailto:xial@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.ejor.2014.01.038
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


the literature, from the simple queueing systems such as M/M/1
queue or M/M/c queue (George & Harrison, 2001; Neuts, 1978) to
complicated queueing networks such as tandem queue, cyclic
queue, and Jackson networks (Ma & Cao, 1994; Weber & Stidham,
1987; Xia & Shihada, 2013). Most of the studies of service rate con-
trol aim to find the optimal service rates from the perspective of
the global system. That is, the optimal service rates correspond
to the maximal performance of the entire queueing system. The
optimal solution obtained under this scheme is called the social
optimum.

Much literature of game theory in queueing systems studies the
admission control from the customer-level competition, where
every customer determines its own strategy to enter the queue
or not (Boudali & Economou, 2012; Debo et al., 2012; Guo & Hassin,
2011; Naor, 1969). However, there is little literature about the ser-
vice rate control of queueing systems from the server-level compe-
tition. Only some literature studies the service rate control of a
simple queueing system, such as M/M/1 queue (Ata & Shneorson,
2006; Dimitrakopoulos & Burnetas, 2011). This is mainly because
the service rate control problem is complicated for queueing net-
works, such as Jackson networks. Since the game theory is a natu-
ral scheme of queueing systems, it is of significance to study the
game theoretic control of service rates in queueing networks. In
a game theoretic framework of queueing networks, every server
optimizes its own service rate control strategy to maximize its
own performance (average payoff). Since the servers are intercon-
nected, the performance of a server is affected by not only that ser-
ver’s strategy, but also other servers’ strategies. Since the interests
of servers are usually conflicting, the servers will compete each
other to maximize their own interests. The system will evolve
accordingly and it may converge to a Nash equilibrium, where every
server has no incentive to change its strategy (Nash, 1951).

The above game theoretic control of service rates in queueing
networks has practical motivations in many engineering systems.
One example is the decentralized power control in wireless net-
works (Altman et al., 2006; Menache & Ozdaglar, 2011). The com-
munication nodes are viewed as servers and the data packets are
viewed as customers. The data packets are transmitted through
the network using a multi-hop routing scheme. With the observa-
tion of channel status or buffer status, each node has to determine
its transmission scheduling strategy to maximize its own payoff
(including the power consumption and the throughput). Since
the nodes are interconnected through a multi-hop scheme, the
scheduling strategies of nodes are mutually affected through the
data traffic intensity. This problem is a non-cooperative game.
The system may converge to an equilibrium which may be far
away from the social optimum. Similar phenomena also exist in
other practical problems, such as the intersection traffic control
in transportation systems, where each intersection can be viewed
as a server and we aim to adjust the green-light period of each
intersection to improve the traffic throughput. Therefore, it is
meaningful to study the optimization of this game theoretic prob-
lem in queueing networks.

In this paper, we study the service rate control problem of closed
Jackson networks from a game theoretic viewpoint. Each server is
viewed as a player in this game. The payoff of each server includes
two parts. One is called the holding cost which is related to the wait-
ing time of customers in the service station. The other is called the
operating cost which is the cost to provide certain service rates.
Each server controls its own service rates in order to maximize its
own average payoff (or minimize the average cost). The control
strategies of all the servers are mutually affected through the
dynamics of the queueing network. We formulate this problem as
an infinite stage non-cooperative stochastic game. We apply the
theory of perturbation analysis in Markov decision processes
(MDP) (Cao, 2007; Cao & Chen, 1997) to analyze this problem. The

theory of perturbation analysis is originally proposed for queueing
systems and it can efficiently exploit the interconnection structure
of queueing networks to optimize the system performance. For this
game theoretic control of service rates in closed Jackson networks,
we establish a difference equation which quantifies the difference
of average payoffs of each server under any two strategies. We also
prove that the average payoff of each server has a monotonic struc-
ture with respect to its service rates. No matter what strategies the
other servers employ, the best response of a server is to choose its
service rates on the boundary. Based on the difference equation,
we develop an iterative algorithm to efficiently find the Nash equi-
librium under proper conditions. As a comparison, we also study
this service rate control problem from a global viewpoint and obtain
the social optimum of this problem. The gap between the social
optimum and the equilibrium is studied using a metric called the
price of anarchy. The bounds of the price of anarchy for this problem
are also derived. Finally, we conduct numerical experiments to
demonstrate the effectiveness of our approach.

The remainder of the paper is organized as follows. In Section 2,
we give a formal description of the service rate control problem in
closed Jackson networks and formulate it as a non-cooperative sto-
chastic game. In Section 3, we analyze this game theoretic control
problem and derive some special properties of this problem. We
develop an iterative algorithm to find the equilibrium. The social
optimum and the price of anarchy of this problem are also studied.
In Section 4, we conduct simulation experiments to demonstrate
the main idea of this paper. Finally, we give some discussions
and conclude this paper in Section 5.

2. Problem formulation

Consider a closed Jackson network with M servers (Gordon &
Newell, 1967; Gross et al., 2008). The total number of customers
in the network is a constant N. There is no customer arrival to or
exit from the network. The service time of servers is exponentially
distributed. The service rate is load-dependent, i.e., the server can
adjust its service rate according to its queue length. We denote
the service rate as li;ni

, where ni is the number of customers at ser-
ver i; i ¼ 1;2; . . . ;M; ni ¼ 0;1; . . . ;N. When ni ¼ 0; li;ni

¼ 0. When
a customer joins a server and finds that server busy, this customer
will wait in the buffer. The capacity of the buffer is assumed ade-
quate. The service discipline is first come first served. When a cus-
tomer finishes its service at server i, it leaves server i and joins
server j with routing probability qij; i; j ¼ 1;2; . . . ;M. Without loss
of generality, we assume qii ¼ 0 for all i ¼ 1;2; . . . ;M. Obviously,
we have

PM
j¼1qij ¼ 1 for all i. The system state is denoted as

n :¼ ðn1; n2; . . . ;nMÞ. All the possible states compose the state space

which is denoted as S :¼ fall n :
PM

i¼1ni ¼ Ng.
Each server has its own strategy to determine its own service

rates. The value domain of service rate li;ni
is denoted as Di;ni

,
which is usually a real number interval ½ai;ni

; bi;ni
�; i ¼ 1;2; . . . ;

M; ni ¼ 1;2; . . . ;N. Each server has its own payoff function, which
consists of two types of costs. One is called the holding cost and the
other is called the operating cost. The holding cost reflects the con-
gestion status in the service station. We define the holding cost of
server i as Ch � ni per unit time, where Ch is the holding cost price of
each customer in the service station. The operating cost reflects the
price of the service rate provided. Higher is the service rate, more is
the operating cost. We define the operating cost of server i as
Co � li;ni

per unit time, where Co is the price to provide a unit service
rate. In summary, the payoff function of server i is defined as

fiðn;lnÞ ¼ �Ch � ni � Co � li;ni
; ð1Þ

where ln :¼ ðl1;n1
;l2;n2

; . . . ;lM;nM
Þ is the vector consisting of all the

service rates of servers at state n. Actually, ln can also be viewed as
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