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a b s t r a c t

A multiphase approach that incorporates demand points aggregation, Variable Neighbourhood Search
(VNS) and an exact method is proposed for the solution of large-scale unconditional and conditional
p-median problems. The method consists of four phases. In the first phase several aggregated problems
are solved with a ‘‘Local Search with Shaking’’ procedure to generate promising facility sites which are
then used to solve a reduced problem in Phase 2 using VNS or an exact method. The new solution is then
fed into an iterative learning process which tackles the aggregated problem (Phase 3). Phase 4 is a post
optimisation phase applied to the original (disaggregated) problem. For the p-median problem, the
method is tested on three types of datasets which consist of up to 89,600 demand points. The first two
datasets are the BIRCH and the TSP datasets whereas the third is our newly geometrically constructed
dataset that has guaranteed optimal solutions. The computational experiments show that the proposed
approach produces very competitive results. The proposed approach is also adapted to cater for the con-
ditional p-median problem with interesting results.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The p-median problem is a discrete location problem where the
objective is to find the location of p facilities among n discrete po-
tential sites in such a way to minimise the sum of the weighted
distances between customers and their nearest facilities. The p-
median problem becomes the conditional problem when some
(say q) facilities already exist in the study area and the aim is to lo-
cate p new facilities given the existing q facilities. This problem is
also known as the (p,q) median problem. A customer can be served
by one of the existing or the new open facilities whichever is the
closest to the customer. When q = 0, the problem reduces to the
unconditional problem (the p-median problem for short). A further
but brief description related to the conditional p-median problem
will be presented in Section 6 where some results are also given.

The p-median problem is categorised as NP-hard (Kariv &
Hakimi, 1979). For relatively large problems, optimal solutions
may not be found and hence heuristic or metaheuristic methods
are usually considered to be the best way forward for solving such
problems. Mladenovic, Brimberg, Hansen, and Moreno-Perez
(2007) provided an excellent review on the p-median problem
focusing on metaheuristic methods. The p-median problem was

originally formulated by ReVelle and Swain (1970). However,
Rosing, ReVelle, and Rosing-Vogelaar (1979) enhanced the
p-median problem formulation to reduce its solution time. In their
model, the furthest p � 1 assignments associated with each
demand point are ignored. This reduction scheme is based on the
observation that in the worst case, a demand point i is served by
its (n � p + 1)th closest site. The enhanced p-median formulation
is formulated as follows:

Minimise
X
i2I

X
j2Fi

widði; jÞYij ð1Þ

s:t:
X
j2Fi

Yij ¼ 1 8i 2 I ð2Þ
X
j2J

Xj ¼ p ð3Þ

Yij � Xj 6 0; 8i; j 2 Fi ð4Þ
Xj 2 f0;1g 8j; j 2 J ð5Þ
Yij 2 f0;1g 8i; j 2 Fi ð6Þ

where (I,J) is the set of customers (i e I = {1, . . . ,n}) and set of poten-
tial sites (j e J = {1, . . . ,M}) (i.e.:n = |I| and M = |J|) respectively; wi the
demand or weight of customer i; d(i, j) the distance between cus-
tomer i and potential site j (Euclidian distance is used here); p the
required number of facilities to locate; Yij = 1, if customer i is fully
served by a facility at site j and = 0 otherwise; Xj = 1, if a facility is
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opened at potential site j and = 0 otherwise; Fi is the set of all sites
except the p � 1 furthest sites from demand point i.

The objective function (1) minimises the total demand-weighted
distance. Constraints (2) guarantee that each customer i is assigned
to one facility only. Constraint (3) states that the number of facilities
to be located is p. Constraints (4) ensure that customer i can only be
allocated to facility j (i.e., Yij = 1) if a facility is opened at site j (i.e.,
Xj = 1). The use of the sets Fi in constraints (2), (4), and (6) yields a
more compact formulation, requiring a fewer number of variables
and constraints than the classical formulation.

In some applications, p-median problems may involve a large
number of demand points and potential facility sites. These prob-
lems arise, for example, in urban or regional areas where the de-
mand points are individual private residences. Francis, Lowe,
Rayco, and Tamir (2009) stated that it may be impossible and time
consuming to solve location problems consisting of a large number
of demand points. To simplify the problem, it is quite common to
aggregate demand points (and/or potential facility sites) when
solving large-scale location problems. In other words, the number
of demand points (and/or potential facility sites) can be reduced
from n to m points (m� n) so that the approximated problem
can be solved within a reasonable amount of computing time.
However, aggregation introduces errors in the data as well as in
the models output, thus resulting in less accurate results.

The main contributions of this paper include: (i) a novel
multiphase approach that incorporates aggregation, Variable
Neighbourhood Search (VNS) and an exact method for solving large
p-median problems, (ii) new best solutions for some benchmark
problems, (iii) the construction of a new large dataset for p-median
problems with guaranteed optimality, and (iv) an adaptation of the
proposed approach for the conditional p-median problem.

The paper is organised as follows. Section 2 presents a brief re-
view of the past efforts at solving large p-median problems. Sec-
tion 3 describes the ingredients that make up our method as well
as the overall algorithm. Detailed explanations of the main steps
and the ‘‘Local Search with Shaking’’ procedure are described in
Section 4. Computational results are presented in Section 5 using
large datasets including the one with guaranteed optimal solutions
which we constructed. Section 6 presents a brief review on the
conditional p-median problem followed by the adaptation and
the implementation of our approach for this related problem. The
last section provides a summary of our findings and highlights
some avenues for future research.

2. Past efforts at solving large p-median problems

This section presents an overview of past efforts at solving large
p-median problems (see Francis et al., 2009, for an excellent re-
view). Hillsman and Rhoda (1978) introduced a classification of
aggregation errors using three types, namely source A, B, and C er-
rors. Source A error occurs when the distance between an Aggre-
gate Spatial Unit (ASU) and a facility is utilised in the model,
instead of the true distance between a Basic Spatial Unit (BSU)
and a facility. Source B error exists in the special case when a facil-
ity is located at an ASU whereas source C error appears when a BSU
is assigned to the wrong facility.

Goodchild (1979) stated that aggregation tends to produce
more dramatic effects on location than on the values of the objec-
tive function while also noting that there is no aggregation scheme
without a possible resulting error. Bach (1981) mentioned that
‘‘the level of aggregation exerts a strong influence on the optimal
locational patterns as well as on the values of the locational crite-
ria’’. Mirchandani and Reilly (1986) examined the effect of replac-
ing distances to demand points (BSUs) in a region by the distance
to a single point (ASU) representing that region.

Current and Schilling (1987) proposed a method for eliminating
source A and source B errors. They introduced a novel way of mea-
suring aggregated weighted travel distances for p-median prob-
lems. Let d(i, j) denote the distance between the ith and the jth
BSUs and ~dðk; jÞ the distance between the representative point of
the kth ASU and the jth BSU. The distance between the kth ASU
and the jth facility is traditionally defined as:

d̂ðk; jÞ ¼Wk
~dðk; jÞ ð7Þ

where Wk ¼
P

i2Ak
wi with Ak being the set of aggregated BSUs at the

kth ASU.
To eliminate source A and B errors, the distance proposed in

Current and Schilling (1987) is set as:

d̂ðk; jÞ ¼
X
i2Ak

widði; jÞ ð8Þ

However, this method is not able to eliminate source C errors.
Casillas (1987) introduced two measures to assess the accuracy

of aggregated models. These include the cost error
(ce = f(F0:C) � f(F0:C0)) and the optimality error (oe = f(F:C) � f(F0:C))
where F and F’ represent the optimal locations of the p facilities
found with the original and the aggregated models respectively,
while C and C’ denote the list of BSUs and ASUs. The objective func-
tions f(F:C), f(F0:C) and f(F0:C0) represent the objective function eval-
uated using F and C, F’ and C, and F’ and C’ respectively.

Oshawa, Koshizuka, and Kurita (1991) studied the location error
and the cost error due to ‘‘rounding’’ in the unweighted 1-median
and 1-centre problems in the one-dimensional continuous space.
Aggregation error bounds for the median and the centre problems
were developed by Francis and Lowe (1992). A Geographical Infor-
mation System (GIS) method for eliminating source C error was
proposed by Hodgson and Neuman (1993). Transport costing er-
rors for the median problems were investigated by Ballou (1994)
who demonstrated that cost errors increase with p but decrease
with m. An investigation by Fotheringham, Densham, and Curtis
(1995) suggested that the level of aggregation affects the location
error more significantly than the objective function value. Francis,
Lowe, and Rayco (1996) introduced a median row-column aggre-
gation method to find an aggregation which gives a small error
bound. In addition to the A, B, and C errors, Hodgson, Shmulevitz,
and Körkel (1997) introduced source D error which arises when
the BSU locations act as potential sites.

Murray and Gottsegen (1997) investigated the influence of data
aggregation on the stability of facility locations and the objective
function for the planar p-median model. Demand point aggrega-
tion procedures for the p-median and the p-centre network
location models were studied by Andersson, Francis, Normark,
and Rayco (1998). Hodgson and Salhi (1998) proposed a
quadtree-based technique to eliminate source A, B, and C errors
in the allocation process. Bowerman, Calamai, and Brent Hall
(1999) investigated the demand partitioning method for reducing
source A, B, and C aggregation errors in p-median problems. Erkut
and Bozkaya (1999) provided a review of aggregation errors for the
p-median problem. Francis, Lowe, and Rayco (2000) computed er-
ror bounds for several location models. Plastria (2001) investigated
how to minimise aggregation errors when selecting the ASUs loca-
tion at which to aggregate given groups of BSUs. Hodgson (2002)
introduced data surrogation error in the p-median problem which
appears when an original population’s demand is substituted by
inappropriate values.

To solve large p-median problems without aggregation, Church
(2003) put forward an enhanced Mixed Integer Linear Program-
ming formulation called COBRA. He also proved that there are
redundant assignment variables that can be consolidated if they
satisfy some equivalent assignment conditions. These conditions
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