
Continuous Optimization

A unified ant colony optimization algorithm for continuous optimization

Tianjun Liao a,⇑, Thomas Stützle b, Marco A. Montes de Oca c, Marco Dorigo b

a State Key Laboratory of Complex System Simulation, Beijing Institute of System Engineering, 10 An Xiang Bei Li Rd., Beijing, China
b IRIDIA, Université Libre de Bruxelles, CP 194/6, Av. F. Roosevelt 50, B-1050 Brussels, Belgium
c Dept. of Mathematical Sciences, University of Delaware, 15 Orchard Rd., Newark, DE 19716, USA

a r t i c l e i n f o

Article history:
Received 11 August 2012
Accepted 8 October 2013
Available online 30 October 2013

Keywords:
Ant colony optimization
Continuous optimization
Automatic algorithm configuration

a b s t r a c t

In this article, we propose UACOR, a unified ant colony optimization (ACO) algorithm for continuous opti-
mization. UACOR includes algorithmic components from ACOR; DACOR and IACOR-LS, three ACO algo-
rithms for continuous optimization that have been proposed previously. Thus, it can be used to
instantiate each of these three earlier algorithms; in addition, from UACOR we can also generate new con-
tinuous ACO algorithms that have not been considered before in the literature. In fact, UACOR allows the
usage of automatic algorithm configuration techniques to automatically derive new ACO algorithms. To
show the benefits of UACOR’s flexibility, we automatically configure two new ACO algorithms, UACOR-s
and UACOR-c, and evaluate them on two sets of benchmark functions from a recent special issue of the
Soft Computing (SOCO) journal and the IEEE 2005 Congress on Evolutionary Computation (CEC’05),
respectively. We show that UACOR-s is competitive with the best of the 19 algorithms benchmarked
on the SOCO benchmark set and that UACOR-c performs superior to IPOP-CMA-ES and statistically signif-
icantly better than five other algorithms benchmarked on the CEC’05 set. These results show the high
potential ACO algorithms have for continuous optimization and suggest that automatic algorithm config-
uration is a viable approach for designing state-of-the-art continuous optimizers.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Metaheuristics are a family of optimization techniques that
have seen increasingly rapid development and have been applied
to numerous problems over the past few years. A prominent meta-
heuristic is ant colony optimization (ACO). ACO is inspired by the
ants’ foraging behavior and it was first applied to solve discrete
optimization problems (Dorigo & Stützle, 2004; Dorigo, Maniezzo,
& Colorni, 1991, 1996). Only much later, adaptations of ACO to con-
tinuous optimization problems were introduced. Socha and Dorigo
(Socha & Dorigo, 2008) proposed one of the now most popular ACO
algorithms for continuous domains, called ACOR. It uses a solution
archive as a form of pheromone model for the derivation of a prob-
ability distribution over the search space. Leguizamón and Coello
(2010) proposed an extension of ACOR, called DACOR, that had
the goal of better maintaining diversity during the search. Subse-
quently, Liao, Montes de Oca, Aydın, Stützle, and Dorigo (2011)
proposed IACOR-LS, an incremental ant colony algorithm with local
search for continuous optimization. IACOR-LS uses a growing solu-
tion archive as an extra search diversification mechanism and a
local search to intensify the search. IACOR-LS was benchmarked
on two prominent sets of benchmark functions for continuous

optimization, obtaining very good results. These benchmark func-
tion sets are the ones proposed for a recent special issue of the Soft
Computing journal (Herrera, Lozano, & Molina, 2010; Lozano, Moli-
na, & Herrera, 2011) (we refer to this special issue as SOCO) and the
special session on real parameter optimization of the 2005 IEEE
Congress on Evolutionary Computation (CEC’05) (Suganthan
et al., 2005).

In this article, we propose a ACO algorithm for continuous
optimization that combines algorithmic components from ACOR,
DACOR and IACOR-LS. We call this algorithm Unified ACO for con-
tinuous optimization (UACOR). It is unified, because from UACOR,
we can instantiate the original ACOR, DACOR and IACOR-LS algo-
rithms by using specific combinations of the available algorithmic
components and parameter settings. However, we can also obtain
combinations of algorithm components that are different from any
of the already proposed combinations; in other words, from UA-
COR we can instantiate new continuous ACO algorithms that have
not been proposed or tested before.

The flexibility of UACOR makes possible the use of automatic
algorithm configuration tools to generate new, high-performing
continuous ACO algorithms. Here, we follow such an approach
and use Iterated F-race (Birattari, Yuan, Balaprakash, & Stützle,
2010), an automatic algorithm configuration tool, as implemented
in the irace package (López-Ibáñez, Dubois-Lacoste, Stützle, &
Birattari, 2011) for configuring new high-performing ACO algo-
rithms for continuous optimization from UACOR. With automatic

0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.10.024

⇑ Corresponding author. Tel.: +86 18302330650.
E-mail addresses: tliao@ulb.ac.be (T. Liao), stuetzle@ulb.ac.be (T. Stützle),

mmontes@math.udel.edu (M.A. Montes de Oca), mdorigo@ulb.ac.be (M. Dorigo).

European Journal of Operational Research 234 (2014) 597–609

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2013.10.024&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.10.024
mailto:tliao@ulb.ac.be
mailto:stuetzle@ulb.ac.be
mailto:mmontes@math.udel.edu
mailto:mdorigo@ulb.ac.be
http://dx.doi.org/10.1016/j.ejor.2013.10.024
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


configuration tools, algorithm parameters are defined using a kind
of machine learning approach in which an algorithm is first trained
on a set of problem instances and later deployed. We use as train-
ing sets low dimensional versions of the functions in the SOCO and
CEC’05 benchmark sets and configure two new ACO variants:
UACOR-s is configured on the SOCO benchmark (the -s suffix
stands for SOCO) set and UACOR-c on the CEC’05 benchmark set
(the -c suffix stands for CEC). UACOR-s and UACOR-c are then
tested on higher dimensional versions of the SOCO and CEC’05
benchmark functions. The results show that (i) UACOR-s is com-
petitive or superior to all the 19 algorithms benchmarked on the
SOCO function set and that (ii) UACOR-c is superior to IPOP-
CMA-ES (Auger & Hansen, 2005) and statistically significantly bet-
ter than other five recent state-of-the-art algorithms benchmarked
on the CEC’05 function set. These experimental results show (i) the
high potential of ACO algorithms for continuous optimization and
(ii) the high potential of an algorithm design approach that is based
on the combination of algorithm frameworks and automatic algo-
rithm configuration. In fact, there are few researches that give evi-
dence for the latter point. For instance, KhudaBukhsh, Xu, Hoos,
and Leyton-Brown (2009) proposed SATenstein and instantiated
a new state-of-the-art local search algorithm for the SAT problem;
López-Ibáñez and Stützle (2010) configured a multi-objective ACO
algorithm that outperformed previously proposed multi-objective
ACO algorithms for the bi-objective traveling salesman problem;
Dubois-Lacoste, López-Ibáñez, and Stützle (2011) configured new
state-of-the-art algorithms for five variants of multi-objective
flow-shop problems. More recently, the ideas behind the combina-
tion of algorithm frameworks and automatic algorithm configura-
tion techniques have been extended to the programming by
optimization paradigm (Hoos, 2012). This article is the first to
automatically configure a continuous optimizer framework.

The article is organized as follows. Section 2 introduces ACO for
continuous domains, reviews the three continuous ACO algorithms
underlying UACOR, and identifies their algorithmic components in
a component-wise view. Section 3 describes UACOR. In Section 4,
we automatically configure UACOR to instantiate UACOR-s and
UACOR-c and in Section 5, we evaluate their performance. We con-
clude and give directions for future work in Section 6.

2. ACO algorithms for continuous optimization

2.1. ACO metaheuristic

The Ant Colony Optimization (ACO) metaheuristic (Dorigo &
Stützle, 2004) defines a class of optimization algorithms inspired
by the foraging behavior of real ants. In ACO algorithms, artificial
ants are stochastic procedure for constructing candidate solution
that exploit a pheromone model and possibly available heuristic
information on the problem being tackled. The pheromone model
consists of a set of numerical values, called pheromones, that are
modified at each iteration in order to bias ants toward the most
promising regions of the search space; the heuristic information,
if available, captures a priori knowledge on the particular problem
instance being solved.

The main algorithmic components of the ACO metaheuristic are
the ants’ solution construction and the update of the pheromone
information. ‘‘Daemon actions’’ are procedures that carry out tasks
that cannot be performed by single ants. A common example is the
activation of a local search procedure to improve an ant’s solution
or the application of additional pheromone modifications derived
from globally available information about, for example, the best
solutions constructed so far. Although daemon actions are op-
tional, they can greatly improve the performance of ACO
algorithms.

2.2. ACO for continuous domains

After the initial proposals of ACO algorithms for combinatorial
optimization problems (Dorigo & Stützle, 2004; Dorigo et al.,
1991, Dorigo, Maniezzo, & Colorni, 1996), several ant-inspired algo-
rithms for continuous optimization problems were proposed (Bil-
chev & Parmee, 1995; Dréo & Siarry, 2004; Hu, Zhang, & Li, 2008;
Hu, Zhang, Chung, Li, & Liu, 2010; Monmarché, Venturini, & Slimane,
2000). However, as explained in Socha and Dorigo (2008), most of
these algorithms use search mechanisms different from those used
in the ACO metaheuristic. The first algorithm that can be classified
as an ACO algorithm for continuous domains is ACOR (Socha & Dor-
igo, 2008). In ACOR, the discrete probability distributions used in the
solution construction by ACO algorithms for combinatorial optimi-
zation are substituted by probability density functions (PDFs) (i.e.,
continuous probability distributions). ACOR uses a solution archive
(Guntsch & Middendorf, 2002) for the derivation of these PDFs over
the search space. Additionally, ACOR uses sums of weighted Gauss-
ian functions to generate multimodal PDFs.

Fig. 1 shows a sketch of a solution archive and the Gaussian
functions that form the PDFs from which ACOR samples values to
generate candidate solutions. The solution archive keeps track of
a number of complete candidate solutions for a problem, and, thus,
it can be seen as an explicit memory of the search history.

DACOR (Leguizamón & Coello, 2010) and IACOR-LS (Liao et al.,
2011) are two more recent ACO algorithms for continuous optimi-
zation, which also use a solution archive and generate PDFs using
sums of weighted Gaussian functions. Since the algorithmic com-
ponents of UACOR are derived from the ACOR, DACOR and IACOR-
LS, the next sections describe their operation.

2.2.1. ACOR

ACOR initializes the solution archive with k solutions that are
generated uniformly at random. Each solution is a D-dimensional
vector with real-valued components xi 2 ½xmin; xmax�, with
i ¼ 1; . . . ;D. In this paper, we assume that the optimization prob-
lems are unconstrained except possibly for bound constraints of
the D real-valued variables xi. The k solutions of the archive are
kept sorted according to their quality (from best to worst) and each
solution Sj has associated a weight xj. This weight is calculated
using a Gaussian function as:

xj ¼
1

qk
ffiffiffiffiffiffiffi
2p
p e

�ðrankðjÞ�1Þ2

2q2k2 ; ð1Þ

where rankðjÞ is the rank of solution Sj in the sorted archive, and q is
a parameter of the algorithm. By computing rankðjÞ � 1, the best
solution receives the highest weight.

μ σ μ σ

Fig. 1. The structure of the solution archive and the Gaussian functions used to
generate PDFs in ACOR.

598 T. Liao et al. / European Journal of Operational Research 234 (2014) 597–609



Download English Version:

https://daneshyari.com/en/article/478194

Download Persian Version:

https://daneshyari.com/article/478194

Daneshyari.com

https://daneshyari.com/en/article/478194
https://daneshyari.com/article/478194
https://daneshyari.com

