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a b s t r a c t

Pisinger et al. introduced the concept of ‘aggressive reduction’ for large-scale combinatorial optimization
problems. The idea is to spend much time and effort in reducing the size of the instance, in the hope that
the reduced instance will then be small enough to be solved by an exact algorithm.

We present an aggressive reduction scheme for the ‘Simple Plant Location Problem’, which is a classical
problem arising in logistics. The scheme involves four different reduction rules, along with lower- and
upper-bounding procedures. The scheme turns out to be particularly effective for instances in which
the facilities and clients correspond to points on the Euclidean plane.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Simple Plant Location Problem (SPLP), sometimes called the
Uncapacitated Facility Location Problem or Uncapacitated Warehouse
Location Problem, is a fundamental and much-studied problem in
the Operational Research literature. A formal definition is as fol-
lows. We are given a set I of facilities and a set J of clients. For
any i 2 I, the fixed cost of opening facility i is fi. For any i 2 I and
any j 2 J, the cost of serving client j from facility i is cij. The goal
is to decide which facilities to open, and to assign each client to
an open facility, at minimum cost.

An excellent survey of the early work on the SPLP is given by Kra-
rup and Pruzan (1983). In that survey, it is also formally proven that
the SPLP is NP-hard, by reduction from the Set Covering Problem.
More recent surveys on theory, algorithms and applications include
Cornuéjols, Nemhauser, and Wolsey (1990), Labbé and Louveaux
(1997), Labbé, Peeters, and Thisse (1995) and Verter (2011).

Some instances of the SPLP arising in practice have hundreds or
even thousands of clients. Moreover, instances with large numbers
of facilities and clients arise if one takes a continuous location prob-
lem and then ‘discretises’ it, by modeling continuous regions
(approximately) as sets of discrete points. This led us, in our former
paper (Letchford & Miller, 2012), to devise fast heuristics and
bounding procedures for large-scale instances. In this paper, we
move on to consider how to solve such instances to proven opti-
mality (or near-optimality).

Pisinger, Rasmussen, and Sandvik (2007) introduced the
concept of ‘aggressive reduction’ for large-scale combinatorial
optimization problems. The idea is to spend much time and effort

in reducing the size of the instance, using a suitable collection of
variable-elimination tests. The hope is that the reduced instance
will then be small enough to be solved by an exact algorithm.

In this paper, we present an aggressive reduction scheme for the
SPLP, which uses four different reduction procedures. The scheme
turns out to be particularly effective when the facilities and clients
correspond to points on the Euclidean plane, and the cost of assign-
ing a client to a facility is proportional to the distance between
them. Indeed, for this case, we are able to solve instances that
are significantly larger than those previously solved in the
literature.

The structure of the paper is as follows. Section 2 is a brief lit-
erature review. In Section 3, we present two reduction procedures
that are ‘bound free’, in the sense that no lower or upper bound is
needed to apply them. In Section 4, we present some simple lower-
and upper-bounding procedures, based on linear programming
(LP). In Section 5, we present two more reduction procedures, that
use the bounds in combination with LP duality. Extensive compu-
tational results are given in Section 6, and concluding remarks are
given in Section 7.

We assume throughout the paper that the fi and cij are positive
integers. We also let m denote the number of facilities and n the
number of clients.

2. Literature review

In this section, we review the main papers on relaxations, lower
bounds, reduction rules and exact algorithms for the SPLP. There
are also many papers on heuristics, meta-heuristics and approxi-
mation algorithms for the SPLP, but we do not cover them, for
the sake of brevity. Instead, we refer the reader to the surveys
mentioned in the introduction.
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2.1. Linear programming relaxation

It is possible to formulate the SPLP as a 0–1 LP in several ways
(see, e.g., Balinski, 1965; Cornuéjols, Nemhauser, & Wolsey, 1980;
Efroymson & Ray, 1966; Krarup & Pruzan, 1983). The most com-
monly used formulation, due to Balinski (1965), is the following:

min
X
i2I

fiyi þ
X
i2I

X
j2J

cijxij ð1Þ

s:t:
X
i2I

xij ¼ 1 ð8j 2 JÞ ð2Þ

yi � xij P 0 ð8i 2 I; j 2 JÞ ð3Þ
xij 2 f0;1g ð8i 2 I; j 2 JÞ ð4Þ
yi 2 f0;1g ð8i 2 IÞ: ð5Þ

Here, xij indicates whether client j is assigned to facility i, and yi

indicates whether facility i is opened. The constraints (2) and (3)
will be called assignment constraints and variable upper bounds
(VUBs), respectively.

The LP relaxation is obtained by replacing the constraints (4),
(5) with lower and upper bounds of 0 and 1, respectively. A key
feature of this relaxation is that it typically gives a very good lower
bound, and is often even integral (Ahn, Cooper, Cornuéjols, &
Frieze, 1988; Efroymson & Ray, 1966; Morris, 1978; ReVelle,
1993). On the other hand, the presence of the VUBs makes the LP
highly degenerate. Specialised primal simplex methods have been
devised to cope with VUBs (Schrage, 1975; Todd, 1982), but they
are not entirely satisfactory. For an alternative formulation of the
SPLP as a set covering problem, see Cornuéjols et al. (1980).

2.2. Dual ascent and dual adjustment

In their seminal paper, Bilde and Krarup (1977) proposed to
compute a lower bound by solving the dual of the LP approxi-
mately. The dual can be written, after some simplification, in the
following form:

max
X
j2J

v j ð6Þ

s:t:
X
j2J

wij 6 fi ð8i 2 IÞ ð7Þ

v j �wij 6 cij ð8i 2 I; j 2 JÞ ð8Þ
v j P 0 ð8j 2 JÞ ð9Þ
wij P 0 ð8i 2 I; j 2 JÞ: ð10Þ

Here, the vj and wij are the dual variables for the assignment con-
straints and VUBs, respectively. Now, observe that there always ex-
ists an optimal solution to the dual in which

wij ¼maxf0;v j � cijg ð8i 2 I; j 2 JÞ: ð11Þ

This leads to the following so-called condensed dual:

max
X
j2J

v j ð12Þ

s:t:
X
j2J

maxf0;v j � cijg 6 fi ð8i 2 IÞ ð13Þ

v j P 0 ð8j 2 JÞ:

Bilde and Krarup devised a fast heuristic, called dual ascent, for find-
ing a good feasible solution to the condensed dual. The basic idea is
to initialise the vj at small values, and then repeatedly scan through
the set of customers, increasing the dual values little by little until
no more increase is possible.

In our own paper (Letchford & Miller, 2012), we showed that
dual ascent runs in Oðm2nÞ time. We described an improved
version, which is faster in practice but has the same worst-case

running time, along with a modified version which runs in only
Oðmn log mÞ time, yet still produces reasonably good lower bounds.

Erlenkotter (1978) proposed an effective iterative method,
called ‘dual adjustment’, for improving the dual solution generated
by dual ascent. Several enhancements were also proposed by Kör-
kel (1989). More recently, Hansen, Brimberg, Urosevic, and Mlade-
novic (2007) presented a variable neighborhood search (VNS)
heuristic for the condensed dual. For the sake of brevity, we do
not go into details.

2.3. Lagrangian relaxation

In Beasley (1993), Galvão and Raggi (1989), it was proposed to
solve the dual approximately using Lagrangian relaxation, rather
than dual ascent/adjustment. The assignment constraints (2) are
relaxed, using a vector k 2 Rn of Lagrangian multipliers. The re-
laxed problem is then to minimize the Lagrangian

Fðx; y; kÞ ¼
X
i2I

fiyi þ
X
i2I

X
j2J

ðcij � kjÞxij þ
X
j2J

kj;

subject to (3)–(5). This relaxation can be solved quickly, by comput-
ing for each i 2 I the ‘Lagrangian reduced cost’:

ri ¼ fi �
X
j2J

maxf0; kj � cijg; ð14Þ

and then opening all facilities for which ri is negative. The corre-
sponding lower bound is:
X
j2J

kj �
X
i2I

maxf0;�rig: ð15Þ

The problem of finding optimal Lagrangian multipliers, the so-
called Lagrangian dual, takes the form:

max
k2Rn

min
ðx;yÞ2f0;1gmnþm

Fðx; y; kÞ:

This can be solved approximately using, for example, the subgradi-
ent method.

Very recently, Beltran-Royo, Vial, and Alonso-Ayuso (2012) ap-
plied to the SPLP a method called semi-Lagrangian relaxation. It
gives tighter lower bounds, but at the cost of an increased running
time.

2.4. Problem reduction

By ‘problem reduction’, we mean permanently fixing variables
to 0 or 1, without losing any optimal solutions.

Körkel (1989) showed how to apply problem reduction to the
SPLP, within a dual ascent or dual adjustment context. Let �v 2 Rn

denote a feasible solution to the condensed dual, let LB ¼
P

j2J
�v j

denote the corresponding lower bound, let UB be any upper bound,
and, for all i 2 I, define

si ¼ fi �
X
j2J

maxf0; �v j � cijg: ð16Þ

Then, just like ri in the previous section, si can be viewed as an esti-
mate of the reduced cost of yi in the primal. So, for any i 2 I such that
si exceeds UB � LB, the variable yi can be permanently fixed to 0,
along with xij for all j 2 J. Also, for any i 2 I and j 2 J such that

si þmaxf0; cij � �v jg > UB� LB;

the variable xij can be permanently fixed to 0.
Beasley (1993) gave a slightly different problem reduction

procedure, for use in a Lagrangian context. It uses the Lagrangian
reduced costs ri given in Eq. (14). Namely, if ri is positive and
LB + ri > UB for any i, then yi can be permanently fixed to 0 and, if
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