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a b s t r a c t

This paper aims at resolving a major obstacle to practical usage of time-consistent risk-averse decision
models. The recursive objective function, generally used to ensure time consistency, is complex and
has no clear/direct interpretation. Practitioners rather choose a simpler and more intuitive formulation,
even though it may lead to a time inconsistent policy. Based on rigorous mathematical foundations, we
impel practical usage of time consistent models as we provide practitioners with an intuitive economic
interpretation for the referred recursive objective function. We also discourage time-inconsistent models
by arguing that the associated policies are sub-optimal. We developed a new methodology to compute
the sub-optimality gap associated with a time-inconsistent policy, providing practitioners with an objec-
tive method to quantify practical consequences of time inconsistency. Our results hold for a quite general
class of problems and we choose, without loss of generality, a CVaR-based portfolio selection application
to illustrate the developed concepts.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic decisions under uncertainty are very common in
financial planning and financial engineering problems. Based on
Bellman’s equations and on the well behaved properties of the risk
neutral formulation, several models have been developed for dif-
ferent applications such as portfolio selection, asset and liability
management, scheduling and energy planning. Indeed, some
important works, for instance Pereira and Pinto (1991), Rockafellar
and Wets (1991), Guigues and Römisch (2012a, 2012b), Philpott
and de Matos (2012), Philpott, de Matos, and Finardi (2013),
developed efficient algorithms to solve these problems. However,
in order to have a risk aversion extension, such as in Ruszczyński
(2010), Shapiro (2011), Shapiro, Tekaya, da Costa, and Soares
(2013), one should choose carefully how to introduce the well
known risk measures into these problems.

In this context, the Conditional Value at Risk (CVaR) became one
of the most widely used risk measures for three reasons: first, it is a
coherent risk measure (see Artzner, Delbaen, Eber, & Heath
(1999)); second, it has a clear and suitable economic interpretation
(see Rockafellar & Uryasev (2000) and Street (2009)); and last, but
not least, it can be written as a linear stochastic programming
model as shown in Rockafellar and Uryasev (2000). For these three

reasons, the CVaR has been applied to static (see e.g. Krokhmal,
Palmquist, & Uryasev (2002), Mansini, Ogryczak, & Speranza
(2007), Sawik (2012) among many others in the context of portfo-
lio optimization) and even to dynamic models. However, to choose
a coherent risk measure as the objective function of a dynamic
model is not a sufficient condition to obtain suitable optimal poli-
cies. In the recent literature, time consistency is shown to be one
basic requirement to get suitable optimal decisions, in particular
for multistage stochastic programming models. Papers on time
consistency are actually divided in two different approaches: the
first one focuses on risk measures and the second one on optimal
policies.

The first approach states that, in a dynamic setting, if some ran-
dom payoff A is always riskier than a payoff B conditioned to a gi-
ven time t þ 1, than A should be riskier than B conditioned to t. It is
well known that this property is achieved using a recursive setting
leading to so called time consistent dynamic risk measures pro-
posed by various authors, e.g., Bion-Nadal (2008), Detlefsen and
Scandolo (2005), Riedel (2004), Cheridito, Delbaen, and Kupper
(2006), Roorda and Schumacher (2007), Kovacevic and Pflug
(2009). Other weaker definitions, like acceptance and rejection
consistency, are also developed in these works (see Cheridito
et al. (2006), Kovacevic & Pflug (2009) for details).

The second approach, formally defined by Shapiro (2009), is on
time consistency of optimal policies in multistage stochastic pro-
gramming models. The interpretation of this property given by
the author is the following: ‘‘at every state of the system, our
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optimal decisions should not depend on scenarios which we al-
ready know cannot happen in the future’’. This interpretation is
an indirect consequence of solving a sequence of problems whose
objective functions can be written recursively as the former cited
time consistent dynamic risk measures. It is shown in Shapiro
(2009) for instance that if, for every state of the system, we want
to minimize the CVaR of a given quantity at the end of the planning
horizon, we would obtain a time inconsistent optimal policy. In-
deed, this sequence of problems does not have recursive objective
functions and the optimal decisions at particular future states
might depend on scenarios that ‘‘we already know cannot happen
in the future’’. However, if for t ¼ 0 we want to minimize the CVaR
of a given quantity at the end of the planning horizon and for t > 0
we actually follow the dynamic equations of the first stage prob-
lem, then we obtain a time consistent optimal policy even though
it depends on those scenarios we already know cannot happen.
On the other hand, one can argue that this policy is not reasonable
because for t > 0 the objective function does not make any sense
economically speaking.

In this paper, we use a conceptual definition for time consis-
tency of optimal policies: a policy is time consistent if and only if
the future planned decisions are actually going to be implemented.
In the literature, time inconsistent optimal policies have been com-
monly proposed, in particular Bäuerle and Mundt (2009) in Sec-
tions 3 and 4.1 and Fábián and Veszprémi (2008) have developed
portfolio selection models using CVaR in a time inconsistent way.
In our work, we show with a numerical example that a time incon-
sistent CVaR based portfolio selection model can lead to a subopti-
mal sequence of implemented decisions and may not take risk
aversion into account at some intermediate states of the system.
Then, we propose a methodology to compute the sub-optimality
gap as the difference of the objective function evaluated with
two different policies: the one planned at our current stage and
the one actually implemented in the future. We use the time con-
sistent risk-averse dynamic stochastic programming model with a
recursive objective function and compare its optimal policy to the
time inconsistent one. Other alternatives have been proposed by
Boda and Filar (2006) and Cuoco, He, and Issaenko (2008), however
none of them used the recursive set up of time consistent dynamic
risk measures.

Since the lack of a suitable economic interpretation for this
recursive set up is one of the main reasons why it is not commonly
used, we prove for a more general set of problems that this objec-
tive function is the certainty equivalent w.r.t. the time consistent
dynamic utility defined as the composed form of one period pref-
erence functionals. Then, with a clear economic interpretation for

the objective function of a general set of problems and conse-
quently of the portfolio selection application, we discuss the devel-
oped results with a numerical example.

This paper aims at closing a conceptual gap between theory and
practice regarding time-consistent risk-averse policies in a sto-
chastic programming framework. The first contribution of this
work is an intuitive economic interpretation for the complex
time-consistent recursive objective function. Based on rigorous
proofs provided in the paper, the proposed economic interpreta-
tion is entirely new in the dynamic risk-averse stochastic program-
ming context. Additionally, we discourage time-inconsistent
models by arguing that the associated policies are sub-optimal.
Thus, the second contribution is the development of a new meth-
odology to compute the sub-optimality gap associated with a
time-inconsistent policy, providing practitioners with an objective
method to quantify practical consequences of time inconsistency.
Our results hold for a quite general class of problems and we
choose, without loss of generality, a CVaR-based portfolio selection
application to illustrate the developed concepts. Numerical results
presented in the paper aim at reinforcing intuition and interpreta-
tion of the reader regarding theoretical results.

1.1. Assumptions and notation

In this paper, we assume a multistage setting with a finite plan-
ning horizon T. We consider a probability space ðX;F ;PÞwith a re-
lated filtration F 0 # . . . #F T , where F 0 ¼ ;;Xf g and F ¼ F T .

Since our application is on portfolio selection, we use a unique
notation for all models developed here. The sets, stochastic pro-
cesses, decision and state variables involved are defined in Tables
1 and 2.

Without loss of generality, we assume that there is a risk free
asset, indexed by i ¼ 1, with null excess return for each state of
the system, i.e., r1;tðxÞ ¼ 0, for all t 2 H [ fTg and all x 2 X. More-
over, we assume that Wt ; ri;t ; xi;t 2 L1ðF tÞ, for all t 2 H [ fTg,
where L1ðF tÞ denotes the linear space of the equivalence classes
of almost surely bounded F t-measurable random variables on
ðX;F ;PÞ.

Let W be an F measurable function and consider a realization
sequence �r½1;t� ¼ �r1; . . . ;�rtð Þ0 of the asset returns. Then, we denote
the conditional and unconditional expectations by E Wj�r½1;t�

� �
¼

E Wjr½1;t� ¼ �r½1;t�
� �

and E W½ �, respectively.
We also use the negative of the CVaR developed by Rockafellar

and Uryasev (2000) as an ‘‘acceptability’’ measure (see Kovacevic &
Pflug (2009) for details) whose conditional and unconditional for-
mulations are defined respectively as

Table 1
Set and stochastic process notation.

Sets
A ¼ f1; . . . ;Ag: Index set of the A P 1 assets
H ¼ f0; . . . ; T � 1g: Set of stages
HðsÞ ¼ fs; . . . ; T � 1g: Set of stages starting from s

Stochastic Process
ri;tðxÞ: Excess return of asset i 2 A, between stages t 2 f1; . . . ; Tg and t � 1, under scenario x 2 X, where rtðxÞ ¼ ðr1;tðxÞ; . . . ; rA;tðxÞÞ0 and

r½s;t�ðxÞ ¼ ðrsðxÞ; . . . ; rtðxÞÞ0 for s 6 t
�r½s;t� ¼ ð�rs; . . . ;�rtÞ0: Realization sequence of the asset returns for s 6 t

Table 2
State and decision variable notation.

State variables
WtðxÞ: Wealth at stage t 2 H [ fTg under scenario x 2 X

Decision variables
xi;tðxÞ: Amount invested in asset i 2 A, at stage t 2 H under scenario x 2 X, where xtðxÞ ¼ ðx1;tðxÞ; . . . ; xA;tðxÞÞ0 and x½s;t�ðxÞ ¼ ðxsðxÞ; . . . ; xtðxÞÞ0 for s 6 t
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