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a b s t r a c t

Jiang et al. proposed an algorithm to solve the inverse minimum cost flow problems under the
bottleneck-type weighted Hamming distance [Y. Jiang, L. Liu, B. Wuc, E. Yao, Inverse minimum cost flow
problems under the weighted Hamming distance, European Journal of Operational Research 207 (2010)
50–54]. In this note, it is shown that their proposed algorithm does not solve correctly the inverse
problem in the general case due to some incorrect results in that article. Then, a new algorithm is
proposed to solve the inverse problem in strongly polynomial time. The algorithm uses the linear search
technique and solves a shortest path problem in each iteration.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The network NðV ;A;u; cÞ is supposed where V ¼ f1;2; . . . ;ng is
the set of nodes, A is the set of m arcs, u is the capacity vector
for arcs and c is the cost vector for arcs. Each node i 2 V has an
associated supply or demand of value bðiÞ. The well-known mini-
mum cost flow (MCF) problem is formulated as follows (Ahuja,
Magnanti, & Orlin, 1993):

min
X
ði;jÞ2A

cijxij;

X
ði;jÞ2AðiÞ

xij �
X

ðj;iÞ2A0 ðiÞ

xji ¼ bðiÞ 8i 2 N;

0 6 xij 6 uij 8ði; jÞ 2 A;

ð1Þ

where AðiÞ and A0ðiÞ are respectively the sets of arcs emanating from
and arriving at node i. Assume that x0 is a feasible flow to the prob-
lem (1). The corresponding inverse problem is to modify compo-
nents of the cost vector c as little as possible so that x0 becomes
optimal to the problem (1). The modifications can be measured by
various distances. Jiang, Liu, Wuc, and Yao (2010) considered the in-
verse minimum cost flow (IMCF) problem under the sum-type and
the bottleneck-type weighted Hamming distance. In the sum-type
case, they show that a special case of the inverse problem reduces
to the weighted feedback arc set problem to be APX-hard. In the
bottleneck-type case, they presented an algorithm to solve the
inverse problem. In this note, we give a counter example to show

that their algorithm fails for solving the IMCF problem in more
cases. We show that this problem arises due to some incorrect re-
sults presented in that article. It is also mentioned that a restricted
version of the IMCF problem can be solved correctly by this algo-
rithm. Finally, we propose an algorithm based on the reduced cost
optimality conditions to solve the problem in the general case.
Our proposed algorithm solves a shortest path problem on an aux-
iliary network in each iteration and runs in strongly polynomial
time.

2. Problem definition

In this section, the formulation of the IMCF problem is given
and the algorithm proposed by Jiang et al. (2010) is reviewed.

For a feasible flow x0 of the MCF problem, its residual network
N0ðV ;A0;u0; c0Þ can be constructed by the following algorithm.

Algorithm 1 (Ahuja et al., 1993).

Step 1: The node set is still V.
Step 2: If ði; jÞ 2 A and x0

ij < uij, then ði; jÞ 2 A0; c0ij ¼ cij and
u0ij ¼ uij � x0

ij.
Step 3: If ði; jÞ 2 A and x0

ij > 0 then ðj; iÞ 2 A0; c0ji ¼ �cij and
u0ji ¼ x0

ij.

We denote the arc sets created by steps 2 and 3 as AðcÞ1 and
AðcÞ2, respectively.

For each arc ði; jÞ 2 A, the associated reduced cost is defined as
cp

ij ¼ cij � pi þ pj where pi; i 2 V , is the ith variable of the corre-
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sponding dual problem. The following lemmas give some optimal-
ity conditions for a given feasible solution.

Lemma 2.1 (Negative cycle optimality conditions Ahuja et al.,
1993). A feasible flow x0 to the problem (1) is optimal if and only if
the corresponding residual network N0ðV ;A0;u0; c0Þ does not contain
any negative cost cycle.

Lemma 2.2 (Reduced cost optimality conditions Ahuja et al.,
1993). A feasible flow x0 is optimal to the problem (1) if and only if
some dual variables satisfy the conditions

cp
ij P 0; 8ði; jÞ 2 A0:

Lemma 2.3 (Ahuja et al., 1993). If x0 is optimal to the problem (1),
then cp

ij ¼ 0 for each ði; jÞ 2 A with 0 < x0
ij < uij.

From Lemma 2.1, the IMCF problem under the bottleneck-type
weighted Hamming distance is formulated as follows:

min max
ði;jÞ2A

wijHðdij; cijÞ;

The residual network respect to x0 and
NðV ;A;u;dÞ contains no negative cycle;
� pij 6 dij � cij 6 þqij 8ði; jÞ 2 A;

ð2Þ

where for each ði; jÞ 2 A;wij is a penalty associated with modifying
cij to dij; pij and qij are respectively given bounds for decreasing
and increasing cost coefficient cij, the value Hðdij; cijÞ equals to 1 if
dij – cij and otherwise, Hðdij; cijÞ ¼ 0. Jiang et al. (2010) proposed
the following algorithm to solve the problem (2).

Algorithm 2.

Step 1: Run Algorithm 1 to construct the residual network
N0ðV ;A0;u0; c0Þ respect to NðV ;A;u; cÞ and x0. Let
W ¼ X ¼ ;; and go to Step 2.

Step 2: Choose a negative cost cycle C of the current residual
network. If no negative cycle exists, then go to Step 5.
Otherwise go to Step 3.

Step 3: If C nX ¼ ;, then go to Step 6. Otherwise go to Step 4.
Step 4: Find an arc ðx; yÞ 2 C nX that satisfies

wxy ¼minfwij : ði; jÞ 2 C nXg ð3Þ

and update the current network and the corresponding resid-
ual network as follows:

If ðx; yÞ 2 AðcÞ1, then cxy ¼ cxy þ qxy; c
0
xy ¼ cxy;W ¼

W [ fwxyg.
If ðx; yÞ 2 AðcÞ2, then cyx ¼ cyx � pyx; c

0
xy ¼ �cyx;W ¼

W [ fwyxg. X ¼ X [ fðx; yÞg.
Go back to Step 2.
Step 5: Stop and output that x0 is the minimum cost flow of

the current network, the optimal solution of the prob-
lem (2) is the cost vector of the current network and
the associated optimal objective value is

maxfwij : wij 2Wg:

Step 6: Stop and output that the problem (2) has no feasible
solution.

We shall mention that there exists a little typing error in
Algorithm 2 (Jiang et al., 2010). In Step 4, they set c0yx ¼ �cyx when
ðx; yÞ 2 AðcÞ2. This can be corrected to c0xy ¼ �cyx since ðx; yÞ is in the
residual network and not ðy; xÞ.

3. A counter example

In this section, we give a counter example to show that
Algorithm 2 does not solve the problem (2) in the general cases.
Then, we state some reasons of the inaccuracy of the algorithm.

Example 3.1. The network given in Fig. 1(a) is considered. For each
ði; jÞ 2 A, the penalty wij is also given in Fig. 1(a). Assume that
pij ¼ qij ¼ 10 for each ði; jÞ 2 A. By using Algorithm 1, we construct
the residual network respect to this network and feasible solution
x14 ¼ 1 and xij ¼ 0 for all ði; jÞ 2 A n fð1;4Þg (see Fig. 1(b)). It is
obvious that the residual network contains three negative cycle: 1–
4–3–1, 1–2–4–1 and 1–2–4–3–1 are denoted by C1; C2 and C3,
respectively. It is easy to check an optimal solution of the
problem (2) is d�14 ¼ 5; d�24 ¼ c24 þ q24 ¼ 8 and d�ij ¼ cij for
every ði; jÞ 2 A n fð1;4Þ; ð2;4Þg with the objective value
w24 ¼maxfw14;w24g ¼ 2.

Now, let us to implement Algorithm 2 on this network. We
initialize X ¼ ;;W ¼ ;. Suppose that the algorithm identifies C1 in
the first iteration. Since w14 ¼minfwij : ði; jÞ 2 C1 nXg and
ð1;4Þ 2 AðcÞ1, the algorithm cancels this negative cycle by updating
c14 ¼ c14 þ q14 ¼ 13. Consequently, c014 ¼ þ13 and c041 ¼ �13 in the
new residual network. Also, W ¼ fw14g and X ¼ fð1;4Þg. It is easy

Fig. 1. (a) An instance of the minimum cost flow problem. (b) The corresponding
residual network.
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