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a b s t r a c t

The bi-objective Pollution-Routing Problem is an extension of the Pollution-Routing Problem (PRP) which
consists of routing a number of vehicles to serve a set of customers, and determining their speed on each
route segment. The two objective functions pertaining to minimization of fuel consumption and driving
time are conflicting and are thus considered separately. This paper presents an adaptive large neighbor-
hood search algorithm (ALNS), combined with a speed optimization procedure, to solve the bi-objective
PRP. Using the ALNS as the search engine, four a posteriori methods, namely the weighting method, the
weighting method with normalization, the epsilon-constraint method and a new hybrid method (HM),
are tested using a scalarization of the two objective functions. The HM combines adaptive weighting with
the epsilon-constraint method. To evaluate the effectiveness of the algorithm, new sets of instances based
on real geographic data are generated, and a library of bi-criteria PRP instances is compiled. Results of
extensive computational experiments with the four methods are presented and compared with one
another by means of the hypervolume and epsilon indicators. The results show that HM is highly effective
in finding good-quality non-dominated solutions on PRP instances with 100 nodes.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Freight transportation lies at the forefront of logistics planning.
Until now, the planning of freight transportation activities has
mainly focused on ways of saving money and increasing profitabil-
ity by considering internal transportation costs only, e.g., fuel cost,
drivers’ wages (see, e.g., Crainic, 2000; Forkenbrock, 1999, 2001).

Freight transportation in the United Kingdom (UK) is responsi-
ble for 22% of the CO2 emissions from the transportation sector,
amounting to 33.7 million tonnes, or 6% of the CO2 emissions in
the country, of which road transport accounts for a proportion of
92% (McKinnon, 2007). The 2008 Climate Change Act commits
the UK to an ambitious and legally binding 80% reduction in green-
house gases (GHG) emissions by 2050, from a 1990 baseline. The
situation in Europe is not much different. According to the TERM
2011 Report published by the European Environment Agency,
transport (including international maritime) contributed 24% of
the overall GHG emissions in the EU-27 countries in 2009, with
road transport accounting for 17% of the total GHG emissions
Vicente (2011). The transportation sector therefore has an impor-

tant role to play, as one of the largest GHG contributor, in achieving
reduction targets (Tight, Bristow, Pridmore, & May, 2005).

The carbon dioxide equivalent (CO2e) measures how much glo-
bal warming a given type and amount of GHG may cause, using the
functionally equivalent amount or concentration of CO2 as the ref-
erence. The selection of GHGs to include in the carbon footprint is
an important issue. Wright, Kemp, and Williams (2011) suggest
that a significant proportion of emissions can be captured through
measurement of the two most prominent anthropogenic GHGs,
CO2 and CH4. The emissions of CO2 are directly proportional to
the amount of fuel consumed by a vehicle. This amount is depen-
dent on a variety of vehicle, environment and traffic-related
parameters, such as vehicle speed, load and acceleration (Demir,
Bektas�, & Laporte, 2011). On the other hand, the emissions of
CH4 are a function of many complex aspects of combustion dynam-
ics and of the type of emission control systems used.

Freight companies also generate significant amounts of air pol-
lution besides GHG, including particulate matter (small particles of
dust, soot, and organic matter suspended in the atmosphere), car-
bon monoxide (colorless, odorless, poisonous gas produced when
carbon-containing fuel is not burned completely), ozone (formed
when emissions of nitrogen oxides (NOx) and volatile organic com-
pounds (VOCs) chemically react in the presence of sunlight) and
hazardous air pollutants, also referred to as air toxics (chemicals
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emitted into the atmosphere that cause or are suspected to cause
cancer or other severe health effects) (PSRC, 2010).

Freight transportation planning has many facets, particularly
when viewed from the multiple levels of decision making. Argu-
ably the most famous problem at this level is the well-known Vehi-
cle Routing Problem (VRP), which consists of determining routes
for a fleet of vehicles to satisfy the demands of a set of customers.
The traditional objective in the standard VRP is to minimize a cost
function which is traditionally considered to be the total distance
traveled by all vehicles. Taking a more explicit look at externalities
of freight transportation, and in particular vehicle routing, Bektas�
and Laporte (2011) introduced the Pollution-Routing Problem
(PRP) which aims at minimizing a total cost function comprising
fuel and driving costs in the presence of time windows.

Most real-world problems involve multiple objectives. In the
context of the PRP, two important objectives should be taken into
account, namely minimization of fuel consumption and the total
driving time. Fuel consumption depends on the energy required
to move a vehicle from one point to another, and is proportional
to the amount of emissions. As discussed in Demir, Bektas�, and
Laporte (2012) for each vehicle there exists an optimal speed yield-
ing a minimum fuel consumption. However, this speed is generally
lower than the speed preferred by vehicle drivers in practice. An-
other important issue in road transportation is time management.
In freight transport terminology, time is money and it is essential
for firms to perform timely deliveries in order to establish and keep
a good reputation. In practice, drivers’ schedules tend to be flexible,
with different numbers of hours worked each day, subject to
driving time regulations. If a saving of one hour can be achieved
on a given vehicle route, this would imply reducing the corre-
sponding driver’s costs by an hour (Fowkes & Whiteing, 2006).
Reduction in time spent on a route can be achieved by traveling
at higher speed, but this, in turn, increases fuel costs and
emissions. Since the two objectives of minimizing fuel and time
are conflicting, the problem requires the use of multi-objective
optimization to allow an evaluation of the possible trade-offs.

In practice, companies would like to minimize their total oper-
ating cost, including those related to fuel and time. However, costs
of fuel, emissions and time might differ from one organization to
another, and in some cases rather significantly. As an example, it
is found that driver costs are paid as hourly wages in some coun-
tries (e.g., UK and USA) whereas they are a monthly salary in oth-
ers. Fuel costs also differ between countries. Finally, carbon costs
vary significantly (£60–£225 per tonne) as discussed in Bektas�
and Laporte (2011). In this paper, we investigate a bi-objective
vehicle routing problem in which one of the objectives is related
to fuel consumption and the other to driving time. The two objec-
tives are treated in their natural units of measurement in order to
eliminate the bias resulting from the cost differences just men-
tioned. The benefit is that managers or users of the approach de-
scribed in the paper can attach cost figures relevant to their
organization and can produce tailored trade-off curves for their
operations.

We propose a solution method based on an enhanced adaptive
large neighborhood search (ALNS) and a specialized speed optimi-
zation algorithm described in Demir et al. (2012). The scientific
contribution of this study is threefold: (i) to introduce of a bi-
objective variant of the Pollution-Routing Problem, (ii) to apply
and test multi-objective techniques to solve the bi-objective PRP,
and (iii) to perform extensive computational experiments using
four a posteriori methods evaluated by means of two performance
indicators. In contrast to existing studies on the ‘‘green’’ VRP (for
which a brief review is presented below), this paper breaks away
from the literature by considering two objectives, one of them
being a comprehensive emissions function incorporating the effect
of load and speed. This study also contributes to the multi-objec-

tive optimization literature by presenting a comprehensive com-
parison of four methods on the bi-objective PRP.

The remainder of this paper is organized as follows. In Section 2
we provide a general overview of multi-objective optimization and
we summarize the existing literature on multi-objective and
‘‘green’’ VRPs. Section 3 presents the bi-objective PRP along with
a mathematical programming pformulation. Section 4 includes a
brief description of the heuristic algorithm. Section 5 presents
the generation of the instances and the results of extensive compu-
tational experiments, together with managerial insights. Conclu-
sions are stated in Section 6.

2. Multi-objective optimization

Multi-objective optimization (MOO), also known as multi-
objective programming, multi-criteria or multi-attribute optimiza-
tion, is the process of simultaneously optimizing two or more con-
flicting objectives subject to a number of constraints. In this
section, we consider a MOO problem of the form

ðMOOÞ minimize ff1ðxÞ; f2ðxÞ; . . . ; fkðxÞg ð1Þ
subject to x 2 S ð2Þ

where fk: Rn ! R are k P 2 objective functions to be minimized
simultaneously. The decision variables x = (x1, . . . ,xn)T belong to a
non-empty feasible region (set) S #Rn. If there is no conflict be-
tween the objective functions, then a solution in which every objec-
tive attains its optimum values can be found. In this case, no special
methods are needed. To avoid such trivial cases, we assume that no
such solution exists. This means that the objective functions are at
least partly conflicting. They may also be incommensurable, i.e.,
measured in different units (Miettinen, 1999), as is the case in this
paper.

For non-trivial multi-objective problems, one cannot identify a
single solution that simultaneously optimizes every objective.
While searching for solutions, one reaches a point such that, when
attempting to improve an objective, other objectives suffer as a re-
sult. A solution is called non-dominated, Pareto optimal, or Pareto
efficient if it cannot be eliminated from consideration by replacing
it with another solution which improves upon one of the objectives
without worsening another. Finding such non-dominated solu-
tions, and quantifying the trade-offs in satisfying the different
objectives, is the goal of setting up and solving a MOO problem.
The next section presents formal definitions of Pareto optimality.

2.1. Multi-objective optimization methods

In this section, we review several methods for solving MOO
problems and for generating Pareto optimal solutions. General ref-
erences on this topic can be found in Ehrgott and Gandibleux
(2002) and Jozefowiez, Semet, and Talbi (2008a).

Methods for MOO can be classified in various ways. One of them
is based on whether many Pareto optimal solutions are generated
or not, and on the role of the decision maker in solving the MOO
problem (Rangaiah, 2009). One possible classification is where
the methods are initially grouped into two: (i) generating methods
and (ii) preference-based methods. The former group of methods
aims at generating one or more Pareto optimal points without
any prior input from a decision maker. In contrast, the latter uses
extra information from a decision maker as part of the solution
process. Generating methods are further divided into three: (i)
no-preference methods, (ii) a posteriori methods using a scalariza-
tion approach, and (iii) a posteriori method using a multi-objective
approach.

No-preference methods do not require any prior information
and generally yield only one Pareto optimal point. Examples of
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