
Discrete Optimization

A new algorithm for generating all nondominated solutions
of multiobjective discrete optimization problems

Gokhan Kirlik a, Serpil Sayın b,⇑
a Graduate School of Sciences and Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
b College of Administrative Sciences and Economics, Koç University, Sariyer, Istanbul 34450, Turkey

a r t i c l e i n f o

Article history:
Received 20 November 2012
Accepted 1 August 2013
Available online 9 August 2013

Keywords:
Multiple objective programming
Integer programming
Efficient set
e-Constraint method

a b s t r a c t

Most real-life decision-making activities require more than one objective to be considered. Therefore,
several studies have been presented in the literature that use multiple objectives in decision models.
In a mathematical programming context, the majority of these studies deal with two objective functions
known as bicriteria optimization, while few of them consider more than two objective functions. In this
study, a new algorithm is proposed to generate all nondominated solutions for multiobjective discrete
optimization problems with any number of objective functions. In this algorithm, the search is managed
over (p � 1)-dimensional rectangles where p represents the number of objectives in the problem and for
each rectangle two-stage optimization problems are solved. The algorithm is motivated by the well-
known e-constraint scalarization and its contribution lies in the way rectangles are defined and tracked.
The algorithm is compared with former studies on multiobjective knapsack and multiobjective assign-
ment problem instances. The method is highly competitive in terms of solution time and the number
of optimization models solved.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Optimization algorithms are typically developed with the pur-
pose of optimizing a single objective. However, in many real-world
applications two or more criteria are relevant. Any discrete optimi-
zation problem in which two or more objectives are considered is
called multiobjective discrete optimization problem (MODO). In
MODO, the main issue is to develop effective procedures to gener-
ate efficient solutions that have the property that no improvement
in any objective is possible without sacrificing in at least one other
objective. Many studies have been presented for MODO, including
several specialized algorithms targeting specific problems. How-
ever, the majority of them solve bicriteria discrete problems, while
only a few of them deal with more than two objective functions,
see for instance, Ulungu and Teghem (1994), Ehrgott and
Gandibleux (2000), Ehrgott (2006).

As most discrete optimization problems are computationally
difficult to solve with a single objective function, solving MODO
problems is also difficult (Ehrgott & Gandibleux, 2000). One
straightforward way of solving a MODO problem is by reducing
it to a single objective discrete optimization problem using a
weighted sum formulation that combines multiple objectives
(Zadeh, 1963). The resulting solution will be an efficient one if
positive weights are used. However, it is also known that some

efficient solutions cannot be obtained by using weighted sum sca-
larization (Ehrgott, 2005). The efficient solutions that are not
reachable as optimal solutions to the weighted sum formulation
are called unsupported efficient solutions, whereas the ones that
can be found as optimal solutions to such problems are called sup-
ported efficient solutions.

Several general methods were proposed to deal with unsup-
ported efficient solutions. One of the most well-known techniques
is based on Tchebycheff scalarization that was introduced by
Bowman (1976). Bowman demonstrated that the entire set of effi-
cient solutions can be obtained by parameterizing the objective
functions using the Tchebycheff norm. Eswaran, Ravindran, and
Moskowitz (1989) proposed an algorithm based on these findings
for bicriteria problems. Their algorithm finds the entire efficient
set under a slightly restrictive assumption referred to as uniform
dominance. A variant of this method is referred to as the
augmented weighted Tchebycheff method which finds efficient
solutions without uniform dominance assumption (Steuer & Choo,
1983). Similar to the Tchebycheff approach, Sayin and Kouvelis
propose min–max type subproblems (Sayın & Kouvelis, 2005).
Their algorithm utilizes two-stage optimization problems and
generates the entire efficient set for any bicriteria discrete problem
via a weight space search.

Another well-known technique to obtain efficient solutions for
MODO problems is the e-constraint method, introduced by
Haimes, Lasdon, and Wismer (1971). In this method, one of the
objectives is chosen as the objective function and the others are
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transformed into constraints. The right-hand sides of these con-
straints are quantities in the objective space. In theory, all efficient
solutions of a problem can be found by using the e-constraint
method and convexity is not required (Chankong & Haimes,
1982). In practice, the e-constraint method requires a parametric
search on the right-hand-side values. As the parametric search is
easy to perform for bicriteria problems, most of the bicriteria dis-
crete optimization problems are solved by using this method, for
instance as in Bérubé, Gendreau, and Potvin (2009).

The earliest study that reports computational arguments on
solving MODO with more than two objectives is presented by Sylva
and Crema (2004). The main idea of this method is to obtain a new
efficient solution by removing the dominated space by the previ-
ously obtained efficient solutions. However, removing some por-
tion of the feasible set requires inclusion of additional constraints
and binary variables. Therefore, the size of the single-objective
model increases with respect to the increasing number of efficient
solutions. Laumanns, Thiele, and Zitzler (2006) proposed a method
in which an adaptive scheme for the e-constraint method is uti-
lized to obtain the entire efficient set. They search for efficient
solutions inside the (p � 1)-dimensional grid which partitions a
(p � 1)-dimensional projection of the objective space. For each grid
an e-constraint subproblem is solved. Unlike the original e-con-
straint scalarization, the formulation for the minimization problem
incorporates not only upper bounds but also lower bounds for the
p � 1 objective functions converted into constraints, and solves
lexicographic optimization problems to deal with weak efficiency.
In addition to the challenges introduced by the two-sided bound-
ing of objective functions, another drawback of this method is
the number of subproblems solved. The number of grid points
may become unmanageable, especially in large-size problems. A
recursive algorithm that precedes both studies is presented by
Tenfelde-Podehl (2003). This method deals with MODO with p-
objectives by converting it into several (p � 1)-objective problems.
Tenfelde-Podehl (2003) manages the search in p-dimensional
space by using boxes (Tenfelde-Podehl, 2003). Dhaenens, Lemesre,
and Talbi (2010) use a similar idea in a three-phase solution meth-
od with box splitting improvements and parallelization. The first
phase consists of determining the ideal and nadir points. The sec-
ond phase generates well dispersed nondominated solutions, and
the third phase explores the whole search space to enumerate all
nondominated solutions. Another recursive algorithm is given by
Özlen and Azizoğlu (2009). The authors use the augmented form
for the e-constraint formulation. In this method, ranges for the
nondominated set in the objective space are obtained by minimiz-
ing and maximizing each objective function over the feasible set.
Then, by applying the range information in the constrained prob-
lems the authors generate all nondominated solutions.

In this study, a new method is proposed to solve MODO prob-
lems. The method is designed to work for any number of objective
functions. The algorithm relies on the e-constraint method and
introduces a simple second stage model to deal with weakly effi-
cient solutions. The method conducts a search over all relevant
right-hand-side values by defining (p � 1)-dimensional rectangles
similar to the grid definition of Laumanns et al. (2006). In the
following section, we present the background. In Section 3, the
algorithm and associated theoretical results are given. In Section 4,
computational results and comparison with previous algorithms
are presented on multiobjective knapsack and multiobjective
assignment problem instances. Finally, conclusions are presented
in Section 5.

2. Background

In MODO, p objective functions fjðxÞ : Rn ! R for j = {1, . . ., p}
have to be minimized. The feasible set is discrete and is denoted

as X # Zn. Each feasible solution x 2 X is mapped into its corre-
sponding objective vector y = f(x) and Y ¼ fy 2 Rp : y ¼ f ðxÞ for
some x 2 Xg is referred to as the set of feasible outcomes in the
objective space. In mathematical terms, MODO is defined as;

ðMODOÞ min f ðxÞ ¼ ðf1ðxÞ; . . . ; fpðxÞÞ
s:t: x 2 X

Due to the conflicting objectives, MODO is expected to have more
than one solution. These solutions are called efficient solutions.

Definition 1. A solution x� 2 X is called weakly efficient if there
exists no feasible solution x 2 X such that fj(x) < fj(x⁄) for all j = 1,
. . ., p. A solution x� 2 X is called an efficient solution if there exists
no feasible solution x 2 X such that fj(x) 6 fj(x⁄) for all j = 1, . . ., p
and f̂|ðxÞ < f̂|ðx�Þ for some |̂ 2 f1; . . . ; pg. For an efficient solution
x⁄, f(x⁄) is referred to as a nondominated solution in the outcome
space.

The set of all efficient solutions of MODO is called the efficient
set and denoted as XE. The image of the efficient set in the objec-
tive space is called nondominated set and denoted as YN , i.e.
YN ¼ fy 2 Rp : y ¼ f ðxÞ for some x 2 XEg.

The aim of this study is to obtain all nondominated solutions
ðYNÞ for MODO problems. We use the e-constraint method to ob-
tain efficient solutions. The method retains one of the p objective
functions as the objective function, while the remaining p � 1 are
turned into constraints (Haimes et al., 1971). The optimal solution
of the e-constraint formulation is weakly efficient (Ehrgott, 2005).
Weak efficiency can be avoided by using augmented formulations
(Steuer, 1986). In this work, we use two-stage formulations to
avoid weakly efficient solutions as opposed to lexicographic opti-
mization (Ben-Tal, 1980) employed by Laumanns et al. (2006).

For any e 2 Rp�1, two-stage e-constraint formulations, Pk(e) and
Qk(e) for some k 2 {1, . . ., p}, are defined as follows.

PkðeÞ z ¼min fkðxÞ
s:t: fjðxÞ 6 ej j ¼ 1; . . . ;p and j – k

x 2 X
:

Let z⁄ be the optimal objective value of subproblem Pk(e) and
consider the second stage formulation Qk(e).

Q kðeÞ min
Xp

j¼1

fjðxÞ

s:t: fjðxÞ 6 ej j ¼ 1; . . . ;p; and j – k

fkðxÞ ¼ z�

x 2 X

:

Let x⁄ be an optimal solution of two-stage formulations Pk(e)
and Qk(e). We will show that x⁄ is always efficient for any
e 2 Rp�1, and any efficient solution of MODO problem can be ob-
tained by using two-stage programs.

Theorem 1. For e 2 Rp�1, an optimal solution to the two-stage
formulations Pk(e) and Qk(e) is efficient.

Proof. Let e 2 Rp�1 and let x⁄ be an optimal solution to Pk(e) and
Qk(e) for some k 2 {1, . . ., p}. Suppose x⁄ is not efficient. Then there
exists a solution x0 2 X such that fj(x0) 6 fj(x⁄) for all j = 1, . . ., p and
f̂|ðx0Þ < f|̂ðx�Þ for some |̂ 2 f1; . . . ; pg. Since fj(x0) 6 fj(x⁄) 6 ej for j = 1,
. . ., p and j – k, x0 is feasible for Pk(e). If fk(x0) < fk(x⁄), this contradicts
the optimality of x⁄. Then fk(x0) = fk(x⁄) = z⁄ must hold. Therefore, x0

is also feasible to Qk(e). Summing over all j yieldsPp
j¼1fjðx0Þ <

Pp
j¼1fjðx�Þ, which contradicts optimality of x⁄ to Qk(e).

Therefore, the optimal solution x⁄ of the two-stage formulations
is efficient. h
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