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a b s t r a c t

This paper proposes a shape-restricted nonparametric quantile regression to estimate the s-frontier,
which acts as a benchmark for whether a decision making unit achieves top s efficiency. This method
adopts a two-step strategy: first, identifying fitted values that minimize an asymmetric absolute loss
under the nondecreasing and concave shape restriction; second, constructing a nondecreasing and con-
cave estimator that links these fitted values. This method makes no assumption on the error distribution
and the functional form. Experimental results on some artificial data sets clearly demonstrate its superi-
ority over the classical linear quantile regression. We also discuss how to enforce constraints to avoid
quantile crossings between multiple estimated frontiers with different values of s. Finally this paper
shows that this method can be applied to estimate the production function when one has some prior
knowledge about the error term.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quantile frontier with s � 100% acts as a benchmark for
whether a decision making unit (DMU) achieves top s efficiency.
In statistics, this s-frontier is merely the s-quantile of random
output conditional on various input levels. If one DMU produces
output not less than the s-frontier at its input level, the DMU is
regarded as s-efficient; otherwise, s-inefficient. In contrast with
the full frontier that envelopes the production possibility set, the
s-frontier partitions the production possibility set into two
portions: upper s-efficient and lower s-inefficient.

Linear quantile regression (LQR: Koenker & Bassett JR, 1978) has
been applied to s-frontier estimation by Behr (2010) and Bernini,
Freo, and Gardini (2004). The first paper studied the productivity
of German savings, cooperative and commercial banks, and the
second paper analyzed the efficiency of the Italian hotel industry.
In both papers, s-frontier is assumed to be linear with the input
(or log-input). But this linear functional form may fail to describe
complex dependence relationships between conditional quantiles
and input levels. Real applications call for flexible nonparametric
methods, instead of LQR that is characterized primarily by techni-
cal convenience.

This paper provides a concave nonparametric quantile regres-
sion (CNQR) for s-frontier estimation. Similar to previously

proposed nonparametric extensions in frontier analysis, e.g.
convex nonparametric least squares (CNLS: Kuosmanen, 2008),
corrected concave nonparametric least squares (C2NLS: Kuosma-
nen & Johnson, 2010) and stochastic non-smooth envelopment of
data (StoNED: Kuosmanen & Kortelainen, 2012), this estimator
has a piecewise linear form and satisfies monotonicity and concav-
ity. The main characteristics of CNQR are described as follows.
First, it is robust to functional misspecification that could under-
mine conventional parametric regression methods. Second, with
the CNLS formulation (14a–d) developed by Kuosmanen (2008),
it adheres to the regularity conditions (monotonicity and concav-
ity) implied by microeconomic theory. Third, it enables the trans-
formation of continuously constrained shape-restricted quantile
regression into a tractable linear program.

A nonparametric quantile regression model for s-frontier esti-
mation is proposed in Wang and Wang (2013), which applies
shape-restricted support vector regression with pinball loss.
Although this estimator is smooth, it may fail to be globally nonde-
creasing and concave, because it only imposes the first and second-
order derivative constraints on the sample points, as that in Wang
and Ni (2012). However, the CNQR estimator in this paper is glob-
ally nondecreasing and concave, which is a decided advantage over
Wang and Wang (2013).

Quantile frontier in this paper differs significantly from partial
frontier in Aragon, Daouia, and Thomas-Agnan (2005), Daouia
and Simar (2007) and Martins-Filho and Yao (2008), which is also
based on conditional quantiles of random output. In these papers,
the a-partial frontier at a given input level x is the a-quantile of
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random output conditional on input level not larger than x,
whereas in this paper the s-quantile frontier at x is the s-quantile
conditional on input level right equal to x. The a-partial frontier
in the aforementioned studies is to evaluate whether one speci-
fied DMU achieves the largest a output among companies with
inputs less than or equal to its input. Because comparing a DMU’s
output to that of other DMUs with substantially less input is a
meaningless endeavor, we do not test their models in the
experiments.

The rest of this paper is organized as follows. Section 2 presents
the shape-restricted nonparametric quantile regression for s-fron-
tier estimation. Section 3 investigates the performance of CNQR
through Monte Carlo simulations. Section 4 discusses how to en-
force non-crossing constraints in estimating multiple frontiers
with different values of s. Section 5 introduces how to estimate
the production function with CNQR by adjusting s when the
modeller has some prior knowledge about the error distribution.
Section 6 concludes the paper.

In this paper, Rd
þ is the nonnegative orthant of Rd. All vectors are

column vectors written in boldface, whereas their elements are
written in plain letters. For example, bi is a vector and zi is the
ith element of vector z. Vectors 0 and 1 are the vectors of appropri-
ate dimensions with all their components equal to 0 and 1, respec-
tively. "i = 1, . . . , n and "j = 1, . . . , n are abbreviated as "i and "j,
respectively. "h denotes "h = 1, . . . , H.

2. Methodology

Consider the standard multiple-input, single-output, cross-sec-
tional model in productivity analysis

Y ¼ uðXÞ þ �; ð1Þ

where Y 2 Rþ denotes the random output, X 2 Rd
þ is the random d-

dimensional input, � represents the error term, and u : Rd
þ ! Rþ is

the nondecreasing and convex production function. Quantile fron-
tiers should be recovered on the basis of independent samples
X ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg from this model.

Let Yjx be the random output Y given input level x and its con-
ditional distribution be FYjx, i.e.,

FY jxðyÞ , ProbfY 6 yj with input xg: ð2Þ

Then the s-frontier at input level x is defined as

usðxÞ , inffy 2 RþjFYjxðyÞP 1� sg: ð3Þ

If FYjx is continuous and strictly increasing, we have
usðxÞ ¼ F�1

Y jxð1� sÞ. The economic meaning of s-frontier is intuitive:
one DMU with production (x,y) is s-efficient if y P us(x); otherwise
s-inefficient. This s-frontier divides the production possibility set
into two parts: upper s-efficient and lower s-inefficient. For any gi-
ven input level x, the percentages of upper s-efficiency and lower s-
inefficiency are s and 1 � s, respectively.

s-frontier can be indirectly acquired by a two-stage procedure:
first, estimating the conditional distribution FYjx; second, comput-
ing us(x) by inverting FYjx. Usually the performance of this proce-
dure heavily depends on the assumptions on the distribution of �
and the functional form of u. To circumvent this model specifica-
tion, we can directly estimate s-frontier by building the depen-
dence between x and us(x) with quantile regression (Koenker &
Bassett JR, 1978). Quantile regression has found successful applica-
tions in predicting daily supermarket sales (Taylor, 2007) and retail
credit risk assessment (Somers & Whittaker, 2007). This strategy
can be described by the following optimization problem

min
us

Xn

i¼1

qsðyi �usðxiÞÞ ð4Þ

where qs : R! Rþ is an asymmetric absolute loss defined as

qsðtÞ ¼
ð1� sÞt t > 0
�st t 6 0:

�
ð5Þ

This loss is also known as pinball loss or elbow loss.
The development from parametric to nonparametric quantile

regression for s-frontier estimation is not straightforward. Some
shape-related constrains must be imposed to guarantee that the
estimated quantile frontier satisfies monotonicity and concavity.
Or else the flexibility of nonparametric methods may lead to coun-
ter-intuitive predictions. The conditional quantile function
us : Rd

þ ! Rþ should be estimated by the following nonparametric
quantile regression

min
us2F2

Xn

i¼1

qsðyi �usðxiÞÞ ð6Þ

where F2 is the set of nondecreasing and concave functions.
The shape restriction us 2 F2 is nontrivial, because it involves

an infinite number of inequality constraints. Problem (6) belongs
to shape-restricted nonparametric regression that has a long his-
tory in statistical literature with seminal works dating back half
a century (e.g. Brunk (1955) and Hildreth (1954)). The common
shapes analyzed in nonparametric econometrics are monotone,
convex (concave), supermodular and homogeneous. Typical appli-
cations of shape-restricted regression in economics include the
estimation of utility functions and production functions. Statistical
convergences of piecewise linear convex least squares regression
can be found in Aguilera, Forzani, and Morin (2011), Seijo and
Sen (2011) and Lim and Glynn (2012). One can refer to Magnani
and Boyd (2009), Kim, Vandenberghe, and Yang (2010), Toriello
and Vielma (2012) and Lee, Johnson, Moreno-Centeno, and Kuos-
manen (2013) for computational issues of piecewise linear convex
least squares regression.

Given that all penalties are imposed only on sample points, the
nonparametric regression (6) can be solved with the following
problem

min
z2FX

2

Xn

i¼1

qsðyi � ziÞ ð7Þ

where FX
2 is the set of all vectors z ¼ ðz1; . . . ; znÞ0 2 Rn

þ, which admits
a nondecreasing and concave function us : Rd

þ ! Rþ such that us(-
xi) = zi for all i = 1, . . . , n. This shape-restricted frontier estimation
can therefore be divided into two steps: first, identifying the fitted
values ðẑ1; . . . ; ẑnÞ that solve problem (7); second, constructing a
monotone and concave estimator which links these fitted points.
These two steps are comprehensively analyzed in Sections 2.1 and
2.2, respectively.

2.1. Fitting

The critical issue in solving problem (7) is how to represent
z 2 FX

2 with common inequality constraints. According to Kuosma-
nen (2008), this nondecreasing and concave shape restriction can
be represented by the following constraints

zi ¼ ai þ b0ixi 8i ð8aÞ
ai þ b0ixi 6 aj þ b0jxi 8i;8j ð8bÞ
bi P 0 8i: ð8cÞ

The inequalities in (8b) enforce concavity, while the nonnegative-
ness of bi in (8c) implements nondecreasingness.

Therefore, problem (7) is equivalent to the following linear
program
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