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a b s t r a c t

Surrogate constraint relaxation was proposed in the 1960s as an alternative to the Lagrangian relaxation
for solving difficult optimization problems. The duality gap in the surrogate relaxation is always as good
as the duality gap in the Lagrangian relaxation. Over the years researchers have proposed procedures to
reduce the gap in the surrogate constraint. Our aim is to review models that close the surrogate duality
gap. Five research streams that provide procedures with zero duality gap are identified and discussed. In
each research stream, we will review major results, discuss limitations, and suggest possible future
research opportunities. In addition, relationships between models if they exist, are also discussed.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider the optimization problem (P) given as follows where f
and each component gi(x) of the vector function g(x) are real-val-
ued functions defined on X. No specific characteristics of these
functions or of X are assumed unless otherwise specified.

P : Minx2X f ðxÞ : st: gðxÞ 6 0: ð1Þ

Let X(F) be the set of all feasible points in (P) defined by

XðFÞ ¼ fx 2 X : gðxÞ 6 0g: ð2Þ

No distinction is made between the row and column vectors, and all
vector products are dot products in the usual sense and conform-
able dimensions are taken for granted. Glover (1965) introduced
the surrogate constraint relaxation as an alternative to the Lagrang-
ian relaxation. A surrogate constraint for problem (P) is a linear
combination of the component constraints of g(x) 6 0 that associ-
ates a multiplier ui with each gi(x) 6 0 to produce a single inequality
ug(x) 6 0, where u = (ui). This inequality is implied by g(x) 6 0
whenever u P 0 (Glover, 1975). Given a multiplier vector u P 0,
the surrogate problem is then defined by

SPðuÞ : Minx2X f ðxÞ : st: ugðxÞ 6 0: ð3Þ

Let the optimal objective function value for SP (u) be s(u) defined by

sðuÞ : inf x2XðuÞ f ðxÞ : where XðuÞ ¼ fx 2 X : ugðxÞ 6 0g: ð4Þ

Note that SP(u) is a relaxation of (P), for u P 0, s(u) cannot exceed
the optimum objective function value of (P). It approaches this va-
lue more closely as ug(x) 6 0 becomes a more ‘faithful’ representa-
tion of the constraint g(x) 6 0. Also, we know that X(F) # X(u)
and thus a faithful representation of g(x) 6 0 by ug(x) 6 0 depends
upon how large the set X(u) is compared to the set X(F). Choices
of the vector u that improve the proximity of SP (u) to (P), which
provide the greatest values of SP (u), yield the strongest surrogate
constraints. Based upon these facts, the definition of the surrogate
dual SD is as follows:

SD : MaxuP0 sðuÞ: ð5Þ

Since X(F) # X(u), the optimal value of the surrogate dual SD is
smaller than or equal to the optimal value of problem (P) and the
amount of difference is called the surrogate duality gap. The smaller
is the gap the more faithfully the single inequality ug(x) 6 0 repre-
sents the system of inequalities g(x) 6 0.

Note that except for non-negativity, there is no restriction on
the values of the multiplier vectors u and components ui of u can
be any real number, i.e., integer, rational or irrational (Glover,
1965).

Greenberg and Pierskalla (1970) observed that the optimal va-
lue of the SD problem is always as good as the optimal value of
the Lagrangian dual (LD) defined by

LD : MaxuP0 LðuÞ: ð6Þ

In (6), L(u) is the function defined by

LðuÞ : inf x2Xff ðxÞ þ ugðxÞg: ð7Þ
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Thus, the surrogate constraint duality gap is always as small or
smaller than the Lagrangian duality gap.

Over the years researchers have introduced a variety of differ-
ent methods for finding the multiplier vectors u that yield the
strongest surrogate constraints (see for example, Glover, 1965;
Dinkel and Kochenberger, 1978; Dyer, 1980; Karwan and Rardin,
1984; Austin and Ghandforoush, 1985; Gavish et al., 1991; Kim
and Kim, 1998; Narciso and Lorena, 1999 and Glover, 2003). An
important issue in surrogate constraint optimization is the way
that constraints are aggregated to create a single constraint. If it
is beneficial to the search process, several constraints may be cre-
ated instead of a single constraint; however, without the loss of
generality we concentrate on the creation of a single constraint.
Most constraint aggregation schemes for integer programing,
group two constraints into one and then sequentially aggregate
each of the remaining constraints with the newly formed con-
straint. Refer to, Rogers et al. (1991), for a comprehensive survey
of aggregation and disaggregation in optimization. Methods for
simultaneously combining constraints also have been introduced
by several researchers (Rogers et al., 1991 and Glover, 2003). In
all of these methods, the concern is to find a set of multipliers to
aggregate multiple constraints into a single constraint. If a solution
to the single constraint problem also satisfies all constraints of the
problem (P) then we have an optimal solution to the original prob-
lem which will imply that we have a zero duality gap. An early re-
sult to close the duality gap is given by Luenberger (1968) who
showed that any quasi-convex programming problem could be
solved exactly if the surrogate multipliers are correctly chosen.

Based on the aforementioned discussion, an important research
topic is to find a multiplier (or a set of multipliers) u such that the
set of solutions to the single constraint ug(x) 6 0 is the same as the
set of solutions to the system of constraints g(x) 6 0. This guaran-
tees X(F) = X(u). Clearly, in order to have the zero surrogate duality
gap, it is not necessary to have X(F) = X(u), however, it is a sufficient
condition. To the best of our knowledge, there are at least five re-
search streams that attempted to close the duality gap in the sur-
rogate constraint methods. These approaches are categorized as
follows: (1) Aggregation of Diophantine equations; (2) Irrational
multipliers method; (3) Maximum entropy method; (4) P-norm
method; and (5) Slicing algorithm. Rogers et al. (1991) provide a
comprehensive discussion regarding surrogate constraint optimi-
zation but does not cover several models we discuss here.

In the following sections, major results in each of the five mod-
els are reviewed, relationships between models are discussed, lim-
itations are discussed, and possible future research opportunities
are suggested.

2. Aggregation of diophantine equations

Finding an aggregation of a given set of equalities to create a
single one (or several equalities) with the same set of solutions
as the original system of equations possess has been an important
research topic over one century. The seminal paper by Mathews
(1896), is likely the first publication to provide a solution to this
problem. Consider the system of two equations given by (8) where
xj P 0, for j = 1, . . ., n, are unknown integers, and aij and bj, for j = 1,
. . ., n, and i = 1, 2, are given positive integers.

Xn

j¼1

a1jxj ¼ b1;
Xn

j¼1

a2jxj ¼ b2; ð8Þ

Mathews (1896) showed that the systems of Eq. (8) possess the
same set of solutions as the single Eq. (9) provided that u1 and u2

are suitably chosen relatively prime integers (whose greatest com-
mon divisor is one). Furthermore, Mathews extended the result to
more than two equations.

Xn

j¼1

ðu1a1j þ u2a2jÞxj ¼ u1b1 þ u2b2: ð9Þ

The aggregation of a system of two equations into a single equation
is based upon the following property (Anthonisse, 1973).

Proposition 1. If u1 and u2 are two relative prime integers, ui – 0,
then all integer solutions of the equation

u1y1 þ u2y2 ¼ 0; ð10Þ

are of the form y1 = tu2, and y2 = �tu1 where t is any integer.
Define:

y1 ¼
Xn

j¼1

a1jxj � b1; y2 ¼
Xn

j¼1

a2jxj � b2: ð11Þ

Now, write the aggregated Eq. (9) in the form of (10). If some ‘favor-
able’ assumptions are imposed on Eqs. (8) then by proposition 1 we
can choose appropriate relative prime numbers u1 and u2 that the
set of solutions to the single equation is the same as the set of solu-
tions to the two equations combined. Any favorable assumption must
satisfy that the value of y2 for all feasible x cannot become a multiple of
u1 for an appropriate choice of u1. It follows from Eq. (10). Thus, in
this situation it is not possible to find any non-zero number for y1

or y2 to satisfy (10). Note that this is also the basis for irrational
multipliers method.

Elmaghraby and Wig (1970), used this method for the first time
and applied to optimization by adding slack variables to inequali-
ties, making them equalities. Other successful implementations of
the method to optimization have been reported in (Glover and
Babayev, 1995; Babayev et al., 1997).

During the last several decades researchers have put major
emphasis on creating a set of multipliers of u to create a single
equation where the set of solutions to the single equation is the
same as the set of solutions to the original set of equations. In all
such attempts the authors imposed many limiting assumptions,
such as: variables and equations must be bounded, variables must
be non-negative and integer valued, problem data must be non-
negative and integer, equations must be linear with bounded con-
stants (Rogers et al., 1991).

Several successful implementations of the aggregation of equa-
tions have been recorded in the literature. Considerable amount of
difficulties have also been reported. The difficulties stem from the
fact that coefficients of the single constraint can grow very large in
practice as the number of equalities increases (Glover and Wool-
sey, 1972; Kannan, 1983; Fishburn and Kochenberger, 1985 and
Khurana and Murty, 2012). It has been shown that the computa-
tion required to aggregate constraint equations in a linear integer
program with non-negative variables and non-negative coeffi-
cients, is polynomial time bounded (Kannan, 1983). Glover and
Woolsey (1972), noted that Mathews’ method of aggregating
sequentially applied to m equations, yields a greater than exponen-
tial growth of the coefficients in the resulting constraint.

In the light of these limitations, attempts have been made to
generate multipliers that create small coefficients in the equivalent
knapsack problem (Rogers et al., 1991). One such attempt is the log
prime method, proposed by Ram et al. (1988) for linear equalities.
In the log prime method, values of multipliers are specific irratio-
nal numbers. Alidaee and Wang (2012) have recently proposed a
generalization of log prime method. The irrational multipliers
method will be discussed in the next section. Now we discuss a
successful implementation of Diophantine equations with rational
multipliers. This is achieved by transforming the surrogate prob-
lem to maximum consistency problem (MCP) introduced by (Glo-
ver and Babayev, 1995 and Babayev et al., 1997). The MCP
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