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a b s t r a c t

In this paper we present a new approach, based on the Nearest Interval Approximation Operator, for deal-
ing with a multiobjective programming problem with fuzzy-valued objective functions.

By the way we have established a Karush–Kuhn–Tucker (K.K.T) kind of Pareto optimality conditions, for
the resulting interval multiobjective program. To this end, we made use of gH-differentiability of
involved interval-valued functions.

Two algorithms play a pivotal role in the proposed method. The first one returns a nearest interval
approximation to a given fuzzy number. The other one makes use of K.K.T conditions to deliver a Pareto
optimal solution of the above mentioned resulting interval program.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many decisions that we make in real life cannot be modeled
easily in deterministic terms because of imprecision surrounding
involved data. In this connection, the noted philosopher Nietzche
was quoted as saying ‘‘No one is gifted with immaculate percep-
tion’’. This has also been well expressed by the Physics Nobel lau-
reate Feynman who once wrote: ‘‘When dealing with a
mathematical model, special attention should be paid to impreci-
sion in data’’. Zadeh ’s incompatibility principle [17] stipulating
that: ‘‘When the complexity of a system increases, our ability to
formulate precise and yet meaningful statement on this system de-
creases up to a threshold beyond which precision and significance
become mutually exclusive characteristics’’, is also instructive in
this regards.

This gives substance to the study of mathematical models under
uncertainty. As probability theory is a matured segment and a
familiar territory of mathematics, it is not a surprise that early
works on mathematical programming under uncertainty was de-
voted to situations where randomness is in the state of affairs
[1,28,29,40]. Nevertheless, imprecision cannot be equated with
randomness. As a matter of fact, there is a qualitatively different
type of imprecision (vagueness) which cannot be tackled with
probabilistic apparatus [43]. This has rightly led some researchers
to embark upon the investigation of ways of integrating fuzzy rela-
tions and/or fuzzy quantities into mathematical programming
models [23,34,44].

In this paper, we consider a multiobjective programming prob-
lem with fuzzy objective functions.

This is an ill-defined problem. Neither solution concepts (like
Pareto Optimality) nor existing approaches (like the weighting
method), introduced for deterministic multiobjective program-
ming, can be blindly applied.

For these tools to be applied, they should be properly tailored to
take into consideration the fuzziness surrounding the problem.

Moreover, existing approaches for solving the above mentioned
problem either caricature the reality or are computationally
demanding.

We propose here a new approach that do not give a bad reflect
of the reality and in the same time yields a computationally tracta-
ble deterministic problem.

At the heart of our approach lies the idea of approximating in-
volved fuzzy quantities by their respective nearest interval approx-
imations. This helps avoiding pitfalls due to severe
oversimplification of the reality.

The challenging task of singling out a solution of the resulting
interval optimization problem is also addressed.

The remaining of the paper unfolds as follows. In Section 2, we
give a brief primer on notions of real interval and fuzzy numbers.
In section 3, we discuss the concept of the nearest interval approx-
imation of a fuzzy quantity. In Section 4, we present our approach
for dealing with a multiobjective programming problem with fuzzy
number coefficients. Section 5 is devoted to a numerical example
for the sake of illustration.

In Section 6, we give a critical analysis of existing methods for
optimization problems with several fuzzy objective functions. Sec-
tion 7 is devoted to an assessment of our method in comparison
with existing ones.
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We end up, in Section 8 with some concluding remarks along
with perspectives for further research in this field.

2. Preliminaries

2.1. Real intervals

We denote by KC the family of all bounded closed intervals in R;
i.e.,

KC ¼ f½a; b�ja; b 2 R and a 6 bg:

For A 2 KC, we write A = [aL,aU] where aL and aU are respectively the
lower and the upper bounds of A.

The center and the width of an interval A = [aL,aU] are respec-
tively given by:

ac ¼ 1
2
½aL þ aU �

aS ¼ aU � aL

The generalization of arithmetic in R to KC may be found in Moore
[36].

The main idea of interval arithmetic is as follows.
Let ⁄ 2 {+,�, �,�} be a binary operation in R. If A, B 2 KC then

A � B ¼ fa � b j a 2 A and b 2 Bg ð1Þ

defines a binary operation on KC.
In the case of division, it is assumed that 0 is not a member of

the interval B.
Operations on intervals used in this paper may be explicitly ob-

tained from (1) as follows:

Aþ B ¼ ½aL; aU � þ ½bL
; bU � ¼ ½aL þ bL

; aU þ bU �

kA ¼ k½aL; aU � ¼ ½kaL
; kaU � for k P 0

½kaU
; kaL� for k < 0

(
where k is a real number.

In the sequel, we’ll also use the generalized Hukuhara difference
[7], defined as follows. For A, B 2 KC,

A�gHB ¼ C iff
either A ¼ Bþ C

or B ¼ Aþ ð�1ÞC

�
The gH-difference has many interesting properties, for example
A � gHA = {0}.

Moreover if A = [a,b] and B = [c,d],

A�gHB ¼ ½minða� c; b� dÞ;maxða� c; b� dÞ�

The following are the two main order relations defined on KC

[25,42].
Let A = [aL,aU] and B = [bL,bU].

� The order relation 6LU is defined as follows:

A6LUB if and only if aL
6 bL and aU

6 bU ð2Þ

� The order relations 6LS and PLS are defined as follows:

A6LS Bif and only if aL
6 bL and aS

6 bS ð3Þ
APLSB if and only if aU P bU and aS

6 bS ð4Þ

The width of an interval can be regarded as an uncertainty
(noise), risk, or a type of variance. Therefore, an interval with smal-
ler width and larger upper (smaller lower) bound is considered
better for maximization (minimization) purposes.

Proposition 2.1 25. If A 6LS B then A 6LU B

2.2. Some properties of interval-valued functions

In this paper we consider interval-valued functions of the type:

F : X 	 Rn ! KC :

In the sequel, F(x) is denoted by [fL(x), fU(x)].

Let H : KC 
 KC ! Rþ

be given by

HðA;BÞ ¼maxfmax
a2A

dða;BÞ;max
b2B

dðb;AÞg

where

dða;BÞ ¼min
b2B
ja� bj:

It is shown in [16] that (KC,H) is a metric space.

2.2.1. Convexity
Let F be an interval-valued function defined on a convex set

X 	 Rn: Then:

(a) F is said to be LU-convex at x⁄ if

Fðkx� þ ð1� kÞxÞ 6LU kFðx�Þ þ ð1� kÞFðxÞ

for all k 2 (0,1) and x 2 X.
(b) F is said to be LS-convex at x⁄ if

Fðkx� þ ð1� kÞxÞ 6LS kFðx�Þ þ ð1� kÞFðxÞ

for all k 2 (0,1) and x 2 X.

The following result, the proof of which may be found else-
where [4], will be used in the sequel.

Proposition 2.2. Let X be a convex subset of Rn and F an interval-
valued function defined on X. Then the following properties hold true.

(a) F is LU-convex at x⁄ if and only if fL and fU are convex at x⁄.
(b) F is LS-convex at x⁄ if and only if fL and fU are convex at x⁄.
(c) If F is LS-convex at x⁄ then F is LU-convex at x⁄.

2.2.2. Continuity
An interval-valued function F defined on X 	 Rn is said to be

continuous at x� if for every e > 0, there exists a d > 0 such that
kx � x�k < d implies H(F(x),F(x�)) < e.

If F(x) = [fL(x), fU(x)] then the following result the proof of which
may be found in [4] holds true.

Proposition 2.3. Let F be an interval-valued function defined on
X 	 Rn and x� 2 X. Then F is continuous at x� if and only if fL and fU are
continuous at x�.

For more details on continuity of interval-valued functions, the
reader may consult [4,13].

2.2.3. gH-differentiability
Consider a real interval T. The gH-derivative of an interval-val-

ued function F: T ? KC at t� is defined as:

F 0ðt�Þ ¼ lim
h!0

Fðt� þ hÞ�gHFðt�Þ
h

ð5Þ

If F 0 (t�) 2 KC satisfying (5) exists, we say that F is (gH)-differentiable
at t�. If F is gH-differentiable at each point t 2 T, we say that F is gH-
differentiable on T.

The generalization of the above definition of gH-derivative to
interval-valued function defined on Rn is as follows.

Let F be an interval-valued function defined on X 	 Rn and let

250 M.K. Luhandjula, M.J. Rangoaga / European Journal of Operational Research 232 (2014) 249–255



Download English Version:

https://daneshyari.com/en/article/478257

Download Persian Version:

https://daneshyari.com/article/478257

Daneshyari.com

https://daneshyari.com/en/article/478257
https://daneshyari.com/article/478257
https://daneshyari.com

