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a b s t r a c t

This paper presents a new local search approach for solving continuous location problems. The main idea
is to exploit the relation between the continuous model and its discrete counterpart. A local search is first
conducted in the continuous space until a local optimum is reached. It then switches to a discrete space
that represents a discretisation of the continuous model to find an improved solution from there. The pro-
cess continues switching between the two problem formulations until no further improvement can be
found in either. Thus, we may view the procedure as a new adaption of formulation space search. The local
search is applied to the multi-source Weber problem where encouraging results are obtained. This local
search is also embedded within Variable Neighbourhood Search producing excellent results.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Location models generally require finding the location of a gi-
ven number, say p, of new facility sites in order to serve in some
optimal way (e.g., minimum cost) a given set of existing facilities,
also known as customers or demand (or fixed) points. If the model
is formulated in continuous space, a distance function is required
to calculate the distance between pairs of points. Since the new
facilities may be located anywhere in the continuous space or re-
gions thereof, these models are referred to as site generating mod-
els (e.g., see Love, Morris, & Wesolowsky, 1988). The distance
functions most commonly used are the Euclidean norm and the
rectangular (or Manhattan) norm; however, more sophisticated
models of distance are available when more accurate estimates
of actual travel distances are desired (e.g., Brimberg & Walker,
2010).

The same location problem may be formulated in discrete space
by restricting the potential new facility sites to a specified finite set
of points in the continuous space. If these sites are chosen well, and
a good algorithm or heuristic is available to solve the discrete for-
mulation, we may anticipate a ‘‘good’’ solution to the original prob-
lem. For example, if we restrict the candidate facility sites to the

given set of fixed points, the classical multi-source Weber problem,
also known as the continuous location-allocation problem, con-
verts to the classical (discrete) p-median problem. We may then
try to obtain a good solution to the discrete model, and use it as
a starting point for the continuous model.

Exploiting the relation between the p-median model and the
continuous location-allocation model has been suggested as early
as in the original work of Cooper (1963, 1964). Hansen, Mladeno-
vić, and Taillard (1998) tested a heuristic that first solves the p-
median problem exactly using a primal–dual algorithm by Erlenk-
otter (1978), and then completes one iteration of ‘‘continuous-
space adjustment’’ by solving the p continuous single facility prob-
lems identified in the first phase. Brimberg, Hansen, Mladenović,
and Taillard (2000) examined this heuristic among others, and con-
cluded that computation time became a limiting factor on larger
problem instances. Gamal and Salhi (2003) used a similar approach
where in the first phase, an effective heuristic is applied instead of
an exact solution approach to solve the p-median problem.

In certain cases it may be shown that the continuous problem
has a finite dominating set. For example, if the rectangular norm
(l1-norm) is used as the distance function, it is well known that
an optimal solution of the continuous location-allocation problem
exists where each of the facilities is located at a vertex of a grid
formed by drawing horizontal and vertical lines (the fundamental
directions of the l1-norm) through each of the demand points.
Since an optimal solution in the plane must also exist with all facil-
ities inside the convex hull of the demand points (e.g., see Hansen,
Perreur, & Thisse, 1980), or the smaller rectangular hull for the l1-
norm (Love et al., 1988), a discrete formulation of the continuous
location-allocation problem with a fewer number of nodes is also
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possible that guarantees an optimal solution of the original prob-
lem. This idea can be extended to the class of polyhedral (or block)
norms (e.g., Ward & Wendell, 1980,Ward, Wendell, & Richard
(1985)), although the grid will be more complicated in general
due to a higher number of fundamental directions attributed to
the norm. This discretisation of the continuous space does not ex-
tend to round metrics such as the Euclidean norm.

In practice the discrete formulation, whether or not it contains
an optimal solution of the original continuous location problem,
may become rather large to be tackled optimally. Aras, Altinel,
and Orbay (2007) propose a discrete approximation to solve the
capacitated multi-source Weber problem (CMSWP) with Euclid-
ean, squared Euclidean and lp distances with 1 < p < 2. The authors
discretise the solution space while increasing the number of poten-
tial sites by using the rectangular grid points that are within the
convex hull of the customers. Two MILP formulations are proposed
using this new set of potential sites, including some attempts in
choosing a subset. Heuristic approaches such as a Lagrangean
relaxation-based method, the p �median heuristic of Hansen
et al. (1998) and the cellular Heuristic of Gamal and Salhi (2001)
are also investigated. Aras, Orbay, and Altinel (2008) adapt the pre-
vious approaches to the case of rectilinear distances whereas Dur-
maz, Aras, and Altinel (2009) extend this discretisation approach to
cater for uncertainty due to changes in the customer set. Very re-
cently, Akyüz, Altinel, and Öncan (2013) studied the CMSWP using
two branch-and-bound techniques where one is related to the dis-
cretisation of the location space. Heuristics based on solving the
discrete approximation of the CMSWP by Lagrangean Relaxation
are proposed by Boyaci, Altinel, and Aras (2013).

For an overview of the continuous location-allocation problem,
the interested reader is referred to the survey paper by Brimberg,
Hansen, Mladenovic, and Salhi (2008) and the references therein,
while for the discrete p-median model and solution approaches
the review by Mladenović, Brimberg, Hansen, and Moreno-Perez
(2007) can be useful.

The relation between discrete and continuous formulations may
be extended to many other location models. For example, the less-
studied continuous p-centre problem becomes the better-known
discrete p-centre problem when candidate facility sites are once
again restricted to the set of fixed points. The classical (discrete) sim-
ple plant location problem has more recently been modelled in con-
tinuous space by Brimberg and Salhi (2005), and in a related paper
by Brimberg, Mladenovic, and Salhi (2004). Indeed, the idea of
exploring the relation between discrete and continuous location
problems presents in our view a rich new area of research.

In this paper we present a new local search for solving contin-
uous location problems that is based on reformulations of the
problem in continuous and discrete space. The basic idea is to find
a local optimum in continuous space using any convenient local
search algorithm. The search space is then modified by reformulat-
ing the problem in discrete space. Here we introduce the idea of
augmenting a specified set of fixed points (the current set) with
the local optima obtained in the continuous phase. Thus, we solve
exactly or heuristically a discrete problem where the nodes of the
network now include the new facility sites obtained in the previ-
ous step. We switch back to continuous space using the discrete
solution as the starting point. The procedure alternates between
continuous and discrete spaces, always adding newly acquired
facility sites to the current set in the discrete formulation, until
no further improvement is found.

The local search outlined above incorporates elements of a
metaheuristic known as formulation space search (FSS). The basic
idea here as presented in Mladenović, Plastria, and Urosevic
(2005) is to use different formulations of a combinatorial or global
optimization problem in an iterative fashion, where in each formu-
lation suitable local searches are used. For example, the authors

applied two formulations in different coordinate systems of the
circle packing problem with excellent results.

In formulation space search, the different formulations are all
equivalent to each other. However, in our case, the discrete model
is an approximation of the continuous model, thus presenting a
fundamental departure from FSS. We may also argue, meanwhile,
that the discrete formulation is equivalent to the continuous for-
mulation in an asymptotic sense, as more facility sites generated
in the continuous phase are added to the network.

The paper is organized as follows. In the next section we provide a
basic framework for the proposed local search. Section 3 illustrates the
local search on the multi-source Weber problem (MWP) using a well-
known 50-customer problem from the literature. Larger problem in-
stances of MWP are examined later in this section. Section 4 develops
a variable neighbourhood search (VNS) heuristic for solving MWP that
employs the proposed local search in its local search step. The same
data sets are also tested here and superior computational results are
obtained. The last section summarizes our conclusions and high-
lights some suggestions for further research.

2. The local search

We consider an unconstrained location problem of the general
form

min f ðX1;X2; . . . ;XpÞ: ðGLPÞ

where Xi 2 RN gives the unknown location of new facility i,
i = 1, . . . , p, and the objective function f(.) represents some perfor-
mance measure, such as total cost. Typically the location problem
occurs in the plane, so that N = 2, and Xi is given by the Cartesian
coordinates (xi,yi).

Consider as an illustration the classical multi-source Weber
problem, which may be formulated as follows:

min f ðX1;X2; . . . ;XpÞ ¼
Xn

j¼1

wjmini¼1;...;pfkXi � Ajkg: ðMWP1Þ

Here Aj denotes the known coordinates of customer j, wj > 0, the
known demand at Aj, and kXi � Ajk the Euclidean distance between
the pair of points Xi and Aj, i = 1, . . . , p, j = 1, . . . , n. The objective
function gives a sum of weighted distances from the demand points
to their nearest facilities, and thus, represents a measure of the total
cost of the current solution.

As a second illustration, consider the continuous weighted p-
centre problem, which may be formulated as follows:

min gðX1;X2; . . . ;XpÞ ¼ max
j¼1;...;n

fv jmini¼1;...;pfkXi � Ajkgg; ðMCPÞ

where weight vj > 0 reflects the ‘‘importance’’ of demand point Aj,
and the remaining notation is the same as for (MWP1). The objec-
tive function gives the maximum (weighted) distance between
the demand points and their nearest facilities, and thus, represents
a measure of the quality of service of the current solution.

Other examples include the use of ordered medians (e.g., Nickel &
Puerto, 2005), or the use of negative-valued weights in (MWP1) or
(MCP) to model obnoxious facilities (e.g., Erkut & Newman, 1989). In
the latter case, restrictions on the location of the facilities may be re-
quired in order to guarantee that an optimal solution exists. Capacity
constraints and flow variables may also be included in the model.

We now describe the basic steps of the proposed local search for
problems of type (GLP). To differentiate between the continuous
and discrete formulations of the problem, we let (GLP) denote
the original continuous formulation and (GLP)0 the discrete approx-
imation. Let S denote a finite set of identified potential sites for the
new facilities, and X a subset of p of these sites. For example,
S = {A1, . . . , An}, where typically n� p, has been recommended in
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