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a b s t r a c t

Geometric branch-and-bound techniques are well-known solution algorithms for non-convex continuous
global optimization problems with box constraints. Several approaches can be found in the literature dif-
fering mainly in the bounds used.

The aim of this paper is to extend geometric branch-and-bound methods to mixed integer optimization
problems, i.e. to objective functions with some continuous and some integer variables. Mixed-integer
non-linear and non-convex optimization problems are extremely hard, containing several classes of
NP-hard problems as special cases. We identify for which type of mixed integer non-linear problems
our method can be applied efficiently, derive several bounding operations and analyze their rates of con-
vergence theoretically. Moreover, we show that the accuracy of any algorithm for solving the problem
with fixed integer variables can be transferred to the mixed integer case.

Our results are demonstrated theoretically and experimentally using the truncated Weber problem and
the p-median problem. For both problems we succeed in finding exact optimal solutions.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Geometric branch-and-bound methods are popular solution
algorithms for continuous and non-convex optimization problems
with a small number of variables, see e.g. Horst, Pardalos, and
Thoai (2000) or Tuy (1998). These techniques find applications
for example in facility location problems, see Plastria (1992),
Drezner and Suzuki (2004), Blanquero and Carrizosa (2009), and
Schöbel and Scholz (2010a) for general geometric branch-and-
bound solution approaches in location theory and, e.g. Drezner
and Drezner (2007), Fernández, Pelegrín, Plastria, and Tóth
(2007), Blanquero, Carrizosa, and Hansen (2009), and Blanquero,
Carrizosa, Schöbel, and Scholz (2011) among plenty of other refer-
ences for some specific location problems solved by these
techniques.

The most important task throughout any branch-and-bound
algorithm is the calculation of lower bounds on the objective func-
tion for some smaller rectangles or boxes. Different techniques to
do so are collected in Schöbel and Scholz (2010b), Scholz
(2012b), and Scholz (2012a). Therein, the rate of convergence is
introduced that allows to evaluate the quality of some well-known
bounding operations.

All the above mentioned techniques deal with pure continuous
objective functions. The contribution of this paper is to extend the
method to mixed-integer non-linear (MINLP) optimization
problems, see Hemmecke, Köppe, Lee, and Weismantel (2010,
chap. 15) for a recent survey about methods in this field. Problems
of this type are extremely hard to solve, containing several classes
of NP-hard problems as special cases, among them, e.g.:

� the class of integer linear problems which is well known to be
NP-hard, see Garey and Johnson (1979),
� the class of continuous quadratic programs with box constraints

which is NP-hard if the problem is non-convex, see Pardalos and
Vavasis (1991), or
� the problem of minimizing a polynomial function of degree 4

over Zn, which is NP-hard due to Lasserre (2001).

In contrast to the classical discrete branch-and-bound approach
for mixed-integer (linear) optimization we propose a geometric
branch-and-bound approach for solving mixed-integer non-linear
problems. The idea is the following: In every step we branch along
the continuous variables (as done in geometric methods such as,
e.g., the big square small square method, see Plastria (1992)) and
solve the discrete problem in any node to get a lower bound. Note
that this is contrary to the usual discrete branch and bound
approaches in which branching is done along the discrete variables
and the continuous relaxation is solved in each node in order to
obtain a bound.
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Although the algorithm we propose can theoretically be applied
to any (MINLP), it only works efficiently if the (MINLP) admits
some special properties. These are a small number of continuous
variables admitting some box-constraints, and that fixing the con-
tinuous variables results in a discrete problem which can be effi-
ciently solved, or at least bounded. Such problems appear in
many fields (e.g. location theory or robust statistics), many of them
being NP-hard, see Section 5 for more examples and references.

In order to apply geometric branch-and-bound techniques to
mixed integer non-linear problems we derive some general bound-
ing operations and we present theoretical results about the rate of
convergence similar to Schöbel and Scholz (2010b). Moreover, we
discuss an extension of the method which leads to exact optimal
solutions under certain conditions given below. We implemented
the approach and applied it to some facility location problems.
The numerical results show that we succeeded in finding exact
optimal solutions and that our method outperforms standard solu-
tion approaches.

The remainder of the paper is organized as follows. In the next
section we will summarize notations and basic concepts which we
use throughout the paper. Section 3 presents the geometric
branch-and-bound prototype algorithm for mixed integer optimi-
zation problems before we prove the convergence of our algorithm
in Section 4. In Section 5 we discuss some general bounding oper-
ations and results concerning their rates of convergence. Next, in
Section 6 we suggest an extension of the algorithm which leads
to exact optimal solutions under certain conditions. In the follow-
ing two sections (Sections 7 and 8) we apply the proposed tech-
niques to some facility location problems and report on some
numerical results. Finally, a brief conclusion and aspects of further
research can be found in Section 9.

2. Notations and basic concepts

Throughout the paper, we will use the following notations.

Notation 1. A box or hyperrectangle with sides parallel to the axes
is denoted by

X ¼ ½x1; �x1� � . . .� ½xn; �xn� � Rn:

The diameter of a box X � Rn is

dðXÞ ¼maxfkx� x0k2 : x; x0 2 Xg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x1 � x1Þ2 þ . . .þ ð�xn � xnÞ2

q

and the center of a box X � Rn is defined by

cðXÞ ¼ 1
2
ðx1 þ �x1Þ; . . . ;

1
2
ðxn þ �xnÞ

� �
:

Our goal is to minimize a mixed integer function

f : Rn � Zm ! R

assuming a feasible region X � P where X � Rn is a box with sides
parallel to the axes and P � Zm with jPj <1. In order to apply the
algorithm presented in the next section, we further need the follow-
ing definition which is an extension of the bounding operation de-
fined in Schöbel and Scholz (2010b) to mixed integer functions.

Definition 2. Let X � Rn be a box, P � Zm with jPj <1, and
consider

f : X �P! R:

A bounding operation is a procedure to calculate for any subbox
Y � X a lower bound LBðYÞ 2 R with

LBðYÞ 6 f ðx;pÞ for all x 2 Y and p 2 P

and to specify a point r(Y) 2 Y and a point j(Y) 2 P.

3. The prototype algorithm

The algorithm suggested in this section is a generalization of the
big cube small cube method presented in Schöbel and Scholz
(2010a). Here, we extend the problem to mixed integer minimiza-
tion problems, i.e. to problems which contain continuous and inte-
ger variables.

Given X # Rn and P # Zm the goal of our approach is to
minimize

f : X �P! R:

This is done using the following algorithmic scheme with an
absolute accuracy of e > 0.

(1) Let X be a list of boxes and initialize X :¼ fXg.
(2) Apply the bounding operation to X and set UB:¼f(r(X),

j(X)).
(3) If X ¼ ;, the algorithm stops. Else set

dmax :¼maxfdðYÞ : Y 2 Xg:
(4) Select a box Y 2 X with d(Y) = dmax and split it into s

subboxes Y1 to Ys such that Y = Y1 [ . . . [ Ys.
(5) Set X ¼ ðX n YÞ [ fY1; . . . ;Ysg.
(6) Apply the bounding operation to Y1 to Ys and set

UB ¼minfUB; f ðrðY1Þ;jðY1ÞÞ; . . . ; f ðrðYsÞ;jðYsÞÞg:
(7) For all Z 2 X , if LB(Z) + e P UB set X ¼ X n Z. If UB has not

changed it is sufficient to check only the subboxes Y1 to Ys.
(8) Whenever possible, apply some further discarding test, see

Section 6.
(9) Return to Step (3).

We remark that it is a non-trivial task to calculate the lower
bound LB(Y) as required throughout the algorithm. We will address
this question in Section 5.

4. Theoretical results

In order to evaluate the quality of bounding operations, we first
extend the definition for the rate of convergence given in Schöbel
and Scholz (2010b).

Definition 3. Let X � Rn be a box, let P � Zm with jPj <1, and
f : X �P! R. Furthermore, consider the minimization problem

min
x2X
p2P

f ðx;pÞ:

We say a bounding operation has the rate of convergence p 2 N

if there exists a fixed constant C > 0 such that

f ðrðYÞ;jðYÞÞ � LBðYÞ 6 C � dðYÞp ð1Þ

for all boxes Y � X.
As shown in Schöbel and Scholz (2010b) for pure continuous

objective functions, the larger the rate of convergence the smaller
the number of iterations needed throughout the algorithm.

The next theorem shows that the proposed algorithm termi-
nates after a finite number of iterations if the bounding operation
has a rate of convergence of at least one.

Theorem 1. Let X � Rn be a box, let P � Zm with jPj <1, and
f : X �P! R. Furthermore, consider the minimization problem

min
x2X
p2P

f ðx;pÞ

and assume a bounding operation with a rate of convergence of p P 1.
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