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a b s t r a c t

This paper proposes an easily implementable, scalable decomposition heuristic for determining near
optimal base stocks in two-level general inventory systems. In this heuristic, the general system is
decomposed into assembly systems—one for each end product. For these assembly systems, the base-
stock levels are calculated separately, taking into account risk-pooling effects for the common compo-
nents. Our numerical analyses yield two main insights: First, the base-stock levels determined by the
heuristic are close-to-optimal. Second, considerable improvements can be obtained compared to com-
mon-sense heuristics.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers a two-level general inventory system. Out-
side suppliers deliver components to a raw material warehouse.
Customers’ demands are fulfilled from stocks of finished products.
For replenishing these stocks, components are taken out of the
warehouse and assembled. We have product-specific components
as well as common components, which are included in the bill-
of-materials of multiple end products. The assembly capacity is
unlimited. The lead times for producing the finished product and
for supply of components are deterministic and may be significant.
There are no fixed costs for supply and assembly. Demands are sto-
chastic. In case of shortages of finished products, demands are
backordered. Both components and finished products can be held
in stock at the expense of item-specific inventory holding costs.
All problem parameters are stationary. The objective is to mini-
mize the long-run average expected inventory and backorder costs.

This setting has a high practical relevance. Examples are the
production of circuit boards (e.g., Grotzinger, Srinivasan, Akella, &
Bollapragada, 1993) and of surgery sets (e.g., customer procedure
trays at Paul Hartmann AG). Surgery sets consist of up to 60 differ-
ent components. Customers can configure their sets on their own,
thereby choosing between several thousands of different compo-
nents. Often customers order their sets continuously during some
years. Before a set can be sold, it has to be sterilized. Since
sterilization and transport after assembly take at least 3 weeks
(including quarantine time), stocks of finished products have to
be built up. Capacities can often be regarded as unlimited in this

context. Assembly personnel is extendable rather easily at short-
term (e.g., through flexible working hours), and sterilization activ-
ities can be outsourced. As the (deterministic) sterilization and
transport times are much larger than the assembly time, the
assumption of deterministic production lead times seems appro-
priate in this context.

In practice, inventory management in such systems is often
driven by simple heuristics without focus on cost-effectiveness.
We believe that a major reason for this is the lack of scalable
approaches which yield near optimal solutions and do not
require heavy computation. Even the potential benefits from more
sophisticated methods are largely unknown. Probably the most
important topics in this context are the choice of the safety stocks
and the strategy for component allocation. For component alloca-
tion, we assume a fixed and—in our opinion—favorable procedure.
The main contribution of this paper is a new, simple heuristic for
determining the safety stocks. We assume that the inventory levels
of products and components are controlled using base-stock poli-
cies. Our heuristic decomposes the general system into separate
assembly systems. For these assembly systems, the optimal base
stocks can be determined using standard approaches. Among those
is the procedure of Shang and Song (2003), which is the base for
the heuristic developed by us. The main idea of our heuristic is
to take the risk-pooling effects due to component commonality
into account. When calculating the base stocks of the common
components, the cumulated secondary demand for all their succes-
sors is considered. Apart from our new heuristic, we evaluate two
‘‘common-sense’’ heuristics in computational tests: level-by-level
optimization and holding stocks of finished products only. Our
heuristic performs well. In all of its variants, the resulting costs
increased by less than 0.9–1.2% on the average, compared to the
optimal solution from enumerating all combinations of base stocks
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between wide upper and lower limits. Compared to the common-
sense heuristics, the improvement is considerable. The solutions
have been more than 7.9% cheaper.

In the literature, effective heuristics for determining safety
stocks in general inventory systems are rare. Despite the
significant advances during the last years (e.g., Song & Yao, 2002;
Benjaafar & ElHafsi, 2006; Song & Zhao, 2009; Lu & Song, 2005;
Lu, Song, & Zhao, 2010; Dogru, Reiman, & Wang, 2010; Nadar,
Akan, & Scheller-Wolf, 2012), this is also true for assemble-to-or-
der (ATO) systems (see also Song & Zipkin, 2003 for this argument).
ATO systems represent an important special case of the setting
investigated in this paper: In ATO systems we have negligible lead
times for assembly, such that finished products are not held in
inventory. (A further related problem class is the repair kit problem
(e.g., Smith, Chambers, & Shlifer, 1980). This problems share with
ATO systems the assumption of zero finished product inventory
since repair jobs cannot be done in advance. A main difference is
that for component replenishment, the repairman undertakes a
tour to a central depot. Thus, the repair kit models usually consider
a single period or a periodic review policy with negligible compo-
nent replenishment lead times.)

We are aware of two bodies of work dealing with scalable heu-
ristics for general inventory systems (see also Graves & Willems,
2003 & de Kok & Fransoo, 2003 for overviews). The first is the
so-called ‘‘guaranteed-service model approach’’ (e.g., Inderfurth &
Minner, 1998; Graves, Willems, & Zipkin, 2000; Humair & Willems,
2006). Here a fixed external service time and upper bounded de-
mand are assumed. Then each stage is able to quote a guaranteed,
deterministic service time to its successors, which simplifies the
determination of the safety stocks. The scope differs significantly
from ours because the trade-off between inventory holding and
backorder costs for finished products is not optimized by these
models—this trade-off is exogenously predetermined by the
amount of the external service time and the demand bound.

The second body corresponds to the ‘‘stochastic-service model
approach’’. On the one hand, this includes large-scale, generic sup-
ply chain models where the stochastic lead times between stages
are approximated by a random variable, while assuming that at
most one component can be out of stock (e.g., Ettl, Feigin, Lin, &
Yao, 2000). This assumption is especially critical in assembly struc-
tures with many components. There, we have a significant proba-
bility for stockouts of more than one component at one instance of
time. Our heuristic does not rely on this assumption.

On the other hand, some researchers propose heuristics partic-
ularly designed for inventory systems with an assembly focus.
Chew, Lee, and Lau (2010) determine safety stocks using infinites-
imal perturbation analysis and a steepest descent algorithm. This
requires significant problem-specific computing, in contrast to
the heuristic proposed here. de Kok and Visschers (1999) propose
a decomposition algorithm. For the special case where different
components have the longest cumulative lead times, they outline
a concrete solution procedure. More general settings, like the one
investigated in this paper, are not considered. In this special case,
the system is decomposed into serial systems, like our approach.
The solution procedure of de Kok and Visschers (1999), however,
cannot be compared with ours since its objective is different: the
minimization of inventory subject to a service-level constraint.
However, there is one important analogy: De Kok and Visschers
solve the serial systems separately. Since they do not take risk-
pooling effects into account, however, their solutions will often
become suboptimal. We investigated an analogous scenario in
our computational tests of Section 4 (ai = 0). There, the degree of
suboptimality ranged between 1.8% and 5.1% compared to the
preferred variant of our heuristic.

This paper is organized as follows. Section 2 presents the model
and the allocation procedure. The decomposition heuristic is

described in Section 3. The computational study in Section 4 pro-
vides insights into the solution quality of the heuristic and the po-
tential savings compared to common-sense heuristics. Section 5
concludes the paper.

2. Model and allocation procedure

Consider a two-level general inventory system. There are
i = 1, . . . , m finished products. The products are assembled on re-
sources with unlimited capacities using components j = 1, . . . , n.
Denote the number of units of component j required to assemble
product i by rji, where rji P 0. The components are procured from
outside suppliers with unlimited capacities. The lead times Li and
Lj for assembly and supply are deterministic. Inventory holding is
allowed for all items. Denote by hi and hj the (local) holding costs
for the products and components, respectively, per unit time. The
echelon holding costs of products are he

i . For each product i, cus-
tomers’ demand follows a Poisson process {Di(t): t > 0} with rate
ki, where Di(t) is the cumulative demand in the interval (0, t]. (Note
that the heuristic is applicable for other distributions, too. There-
fore, we will keep our exposition as generic as possible and high-
light the settings specific to Poisson demand.) Demands are
satisfied from on-hand inventory if possible. Shortages are backor-
dered. Each unit backorder of product i incurs a (penalty) cost bi.

The following variables are used to describe the dynamics of the
system:

For the products,

Bi(t) backorders of product i in period t,
Ii(t) on-hand inventory of product i in period t,
INi(t) net inventory of product i in period t,

INi(t) = Ii(t) � Bi(t),
IOi(t) inventory on order of product i in period t,
ITi(t) work-in-progress inventory of product i in period t

(this corresponds to transit inventory in multiple-
retailer models),

ITPi(t) work-in-progress inventory position of product i in
period t,
ITPi(t) = ITi(t) + INi(t).

For the components,

Wj(t) units of component j that are consumed for production
in period t,

Ij(t) on-hand inventory of component j in period t,
IOj(t) inventory on order of component j in period t.

Moreover, denote Di as the lead time demand for product i. This
is a random variable with the distribution of Di(t, t + Li] = Di

(t + Li) � Di(t).
The sequence of events in the system is as follows: At first, the

on-hand component inventories are allocated to the outstanding
orders (a). The production of finished goods is carried out and
inventory replenishments from the suppliers arrive (b). The cus-
tomers’ demands occur (c). The resulting inventories as well as
new reorders are determined (d). Last, holding and backorder costs
are calculated (e).

The allocation procedure, which determines Wj(t) and, conse-
quently, ITi(t) in step (a), will be described below. For actualizing
the inventories in step (d), we rely on the following calculation.
The net inventory of product i is determined considering the
incoming and outgoing elements over the production lead time:

INiðtÞ ¼ INiðt � LiÞ þ ITiðt � LiÞ � Di for i ¼ 1; . . . ;m: ð1Þ
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