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a b s t r a c t

GARCH models are commonly used for describing, estimating and predicting the dynamics of financial
returns. Here, we relax the usual parametric distributional assumptions of GARCH models and develop
a Bayesian semiparametric approach based on modeling the innovations using the class of scale mixtures
of Gaussian distributions with a Dirichlet process prior on the mixing distribution. The proposed speci-
fication allows for greater flexibility in capturing the usual patterns observed in financial returns. It is also
shown how to undertake Bayesian prediction of the Value at Risk (VaR). The performance of the proposed
semiparametric method is illustrated using simulated and real data from the Hang Seng Index (HSI) and
Bombay Stock Exchange index (BSE30).

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Financial time series analysis gives practical and theoretical
understanding of data collected on financial markets, such as stock
and commodity prices, exchange rates or bond yields. Financial
data usually consists of a time series of prices of a certain asset
for a given period of time. However, most of the financial analysis
consider asset returns, which measures the relative changes in
prices, as they have more attractive statistical properties. Investors
and financial managers need to understand the behavior of asset
returns to have good expectations about future returns and the
risks to which they will be exposed. Although forecasting is an
essential component of any interesting activity, it is usually very
difficult to obtain accurate predictions. Since the prediction meth-
ods inherently depends on the underlying distributions assumed, it
appears to be more appropriate to gain insights into the assumed
probability distributions to obtain better predictions for future val-
ues. Correctly specifying the distribution is also important as it
provides with a measure of investment risk.

Financial market returns exhibit several interesting and compli-
cated features such as volatility clustering and high kurtosis, which
make their modeling a challenging task. Engle (1982) introduced
the autoregressive conditional heteroskedasticity (ARCH) model
to describe these features. Since then, many alternative specifica-
tions have been proposed including the stochastic volatility (SV)

model (Taylor, 1982), the generalized autoregressive conditional
heteroskedasticity (GARCH) model (Bollerslev, 1986), the exponen-
tial generalized autoregressive conditional heteroskedasticity
(EGARCH) model (Nelson, 1991) and the GJR-GARCH model (Glos-
ten, Jaganathan, & Runkle, 1993), among many others. In order to
derive the probability distributions of future returns implied by
GARCH-type models, it is necessary to specify the distribution of
the innovations. The simplest and most routinely used assumption
is that the innovations are Gaussian distributed. However, GARCH
models with Gaussian innovations are inconsistent with the excess
kurtosis frequently observed in both the conditional and uncondi-
tional distributions of returns. Alternative approaches are the Stu-
dent-t distribution (Bollerslev, 1987), the generalized error
distribution (Nelson, 1991), a mixture of two zero mean Gaussian
distributions (Bai, Rusell, & Tiao, 2003 and Ausín & Galeano,
2007) or the Pearson’s type IV distribution (Bhattacharyya, Chau-
dhary, & Yadav, 2008).

In this paper, we consider a semiparametric Bayesian approach
to the analysis of financial time series. The usual parametric distri-
butional assumptions on the innovations of GARCH models are re-
laxed by using the class of Gaussian scale mixtures which is a
broad class that includes, among others, the Gaussian, Student-t,
logistic, double exponential, Cauchy and generalized hyperbolic
distributions. Then, we further assume that the scale mixing distri-
bution follows a Dirichlet process (DP) prior (Ferguson, 1973),
which results in a DP mixture (DPM) model (Antoniak, 1974).
DPM models are included in the area referred to as ‘‘Bayesian non-
parametrics’’, which actually deal with infinite-dimensional sets of
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parameters, see e.g. Gershman and Blei (2012) for a recent over-
view. Models of this type allow for greater flexibility in capturing
the usual patterns usually observed in financial returns.

Although new to the GARCH framework, DPM models have an
extensive literature in Bayesian analysis and provide a broad and
flexible class of distributions in many different settings, see, for in-
stance, Ishwaran and Zarepour (2002); Basu and Chib (2003);
Damien, Galenko, Popova, and Hanson (2007) and Ghosh, Basu,
and Tiwari (2009) and the references therein. In the context of sto-
chastic volatility models, semiparametric Bayesian approaches
have been developed recently by Jensen and Maheu (2010) and
Delatola and Griffin (2011). These papers have shown, for instance,
that estimates of volatility using the semiparametric Bayesian ap-
proach can differ dramatically from those using a Gaussian return
distribution if there is evidence of a heavy-tailed return
distribution.

Extreme price movements in financial markets are unusual, but
important. Recently, the large daily price movements have pointed
out the need of reliable investment risk measures. Value at Risk
(VaR) has become the most widely used measure of market risk,
see Jorion (2006). VaR indicates the potential loss associated with
an unfavorable movement in market prices over a given time per-
iod at a certain confidence level. Statistically speaking, VaR is a
quantile of the conditional distribution of the returns. Thus, its cal-
culation strongly depends on the assumptions made for the inno-
vation distribution. Indeed, one of the main criticisms to the use
of VaR as a risk measure is the inaccuracy of the VaR estimates pro-
duced by standard models, due to the inappropriate specification
of the return distribution, see e.g. Kiesel and Kleinow (2002). As
the semiparametric approach that we propose is based on a flexi-
ble specification of the innovation distribution, it is expected that
more accurate VaR estimates can be obtained. In order to illustrate
this, we will show how to obtain predictive distributions of future
returns which give us the VaR estimates.

The rest of this paper is organized as follows. Section 2 intro-
duces the proposed class of models which shall be referred to as
DPM-GARCH models. Section 3 shows how to implement Bayesian
inference for these models by developing a Markov Chain Monte
Carlo (MCMC) algorithm to sample from the joint posterior distri-
bution. The proposed algorithm combines the ideas of the retro-
spective sampling proposed in Papaspiliopoulos and Roberts
(2008) and the slice sampling approach of Walker (2007). Then,
Section 4 explains how to estimate the predictive distribution of
the returns and addresses the problem of VaR estimation. Section 5
presents a brief Monte Carlo experiment which illustrates the
accuracy in parameter estimation, prediction of returns and VaR
estimation. Section 6 analyzes real data from the Hang Seng Index
(HSI) and Bombay Stock Exchange index (BSE30), finally, Section 7
concludes.

2. Dirichlet process mixture GARCH-type models

The usual structure of GARCH-type models assumes that a re-
turn series, denoted by rt, can be written as follows:

rt ¼ lþ h1=2
t �t; ð1Þ

where l is the unconditional mean of rt, which is constant over
time, ht is the conditional variance of rt given the past history,
Ft�1 ¼ frt�1; rt�2; . . .g, commonly called the conditional volatility,
and �t is a sequence of independent and identically distributed ran-
dom variables with zero mean and unit variance.

GARCH-type models describe the conditional volatility ht as an
exact function of the past. For instance, the GJR-GARCH (p,q) model
proposed by Glosten et al. (1993) assumes that

ht ¼ xþ
Pp

i¼1ðai þ /iIt�iÞðrt�i � lÞ2 þ
Pq

j¼1bjht�j, where It�i is equal

to 1 if rt�i < l, and 0 otherwise. Here x > 0, ai P 0 and ai + /i P 0
for i = 1, . . . , p, and bj P 0, for j = 1, . . . , q, to ensure nonnegativity
of ht and

Pp
i¼1ðai þ /i=2Þ þ

Pq
j¼1bj < 1 to ensure covariance sta-

tionarity of rt. If /1 = � � � = /p = 0, the GJR-GARCH model reduces
to the GARCH model. Moreover, if b1 = � � � = bq = 0, the GARCH mod-
el reduces to the ARCH model.

As mentioned previously, typical models for the innovation dis-
tribution include the Gaussian, Student-t, Gaussian mixture, gener-
alized error or the Pearson’s type IV distributions, among others.
The aim of this paper is to construct a robust alternative to these
usual distributional assumptions. Therefore, we assume that �t fol-
lows an unknown distribution with zero mean and unit variance.
However, in general, the unit variance restriction will make it dif-
ficult to undertake semiparametric Bayesian inference. Thus, in or-
der to avoid it, we propose rescaling the model defined in Eq. (1) as
follows,

rt ¼ lþ ~h1=2
t nt; ð2Þ

where ~ht ¼ ht=x is a rescaled volatility. For instance, in the partic-
ular case of the GJR-GARCH model, ~ht is given by,

~ht ¼ 1þ
Xp

i¼1

ð~ai þ ~/iIt�iÞðrt�i � lÞ2 þ
Xq

j¼1

bj
~ht�j; ð3Þ

where ~ai ¼ ai=x; ~/i ¼ /i=x and nt = x1/2�t is a sequence of indepen-
dent and identically distributed random variables with zero mean
and variance x.

Now, in order to impose a flexible zero mean distribution on the
rescaled innovations, nt, we propose using the broad class of Gauss-
ian scale mixtures, with density function (with respect to Lebesgue
measure) given by,

fnðntjGÞ ¼
Z

/ ntj0; k�1
t

� �
dG k�1

t

� �
; ð4Þ

where / nt j0; k�1
t

� �
denotes the density function of the Gaussian dis-

tribution with zero mean and variance k�1
t , and G is the scale mixing

distribution. The key feature of the proposed semiparametric ap-
proach is that we assume that the scale mixing distribution, G, is
unknown and modeled by a DP, resulting in a DPM model, which
can be written hierarchically as follows,

ntjkt � N 0; k�1
t

� �
;

ktjG � G;

Gjm;G0 � DPðm;G0Þ;
m � pðmÞ;

ð5Þ

where m is a concentration parameter, with prior density p, and G0 is
the baseline probability measure of the Dirichlet process. Also, the
DP provides a conjugate family of priors over distributions such
that, given a set of independent draws from G, the posterior distri-
bution is given by,

GjfktgT
t¼1 � DP mþ T;

m
mþ T

G0 þ
T

mþ T
bG� �

;

where bG is the empirical distribution for the sample fktgT
t¼1. In what

follows, the GARCH-type models previously given, assuming that nt

follows the density function in Eq. (4) and the scale mixing distribu-
tion G is modeled by a DP prior as defined above, will be called
Dirichlet Process Mixture GARCH-type models, i.e. DPM-ARCH,
DPM-GARCH and DPM-GJR-GARCH models, respectively.

It can be shown that, with probability one, G is a discrete distri-
bution with infinite support. Therefore, the scale mixture in Eq. (4)
can be interpreted as an infinite Gaussian mixture, which is the
alternative representation of the model in Eq. (5) based on the
stick-breaking construction of Sethuraman (1994),
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