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a b s t r a c t

A novel optimal preventive maintenance policy for a cold standby system consisting of two components
and a repairman is described herein. The repairman is to be responsible for repairing either failed com-
ponent and maintaining the working components under certain guidelines. To model the operational pro-
cess of the system, some reasonable assumptions are made and all times involved in the assumptions are
considered to be arbitrary and independent. Under these assumptions, all system states and transition
probabilities between them are analyzed based on a semi-Markov theory and a regenerative point tech-
nique. Markov renewal equations are constructed with the convolution of the cumulative distribution
function of system time in each state and corresponding transition probability. By using the Laplace
transform to solve these equations, the mean time from the initial state to system failure is derived.
The optimal preventive maintenance policy that will provide the optimal preventive maintenance cycle
is identified by maximizing the mean time from the initial state to system failure, and is determined in
the form of a theorem. Finally, a numerical example and simulation experiments are shown which vali-
dated the effectiveness of the policy.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

When large-scale complex systems fail, the consequence on
manufacturing and human safety can be devastating, such as when
plants are shut down, chemical plants explode, or airplanes crash.
However, due to site environments and economic reasons, it is al-
most impossible for practical engineering systems to realize zero
risk and/or be completely safe. Therefore, knowing how to improve
the system reliability and safety effectively is important. Conse-
quently, improving preventive maintenance has become an effi-
cient and objective approach to reducing risks.

Recently, the optimization of maintenance policies for repair-
able systems has attracted the attention of many researchers due
to their various applications in engineering. From a methodology
point of view, most optimal maintenance policies focus on model-
ing the repairable system and optimizing a certain performance
indicator (e.g., maintenance cost, system availability, or reliability)
under some constraints. For instance, Smidt-Destombes, Heijden,
and Harten (2009) developed heuristics for a joint optimization
of preventive maintenance (PM) frequency, spare part inventory
levels and spare part repair capacity for a k-out-of-n system. Wang
(2012), whose work is similar to Smidt–Destombes, proposed a

joint optimization for inventory control of spare parts and the
PM inspection interval, in which stochastic dynamic programming
was employed to find the joint optimal solutions over a finite time
horizon. A study by Dehayem Nodem, Kenné, and Gharbi (2011)
which aimed to find the decision variables that minimize overall
cost, including repair and PM costs, resulted in a method which
found the optimal production, repair, and PM policies based on a
semi-Markov decision process. Borrero and Akhavan-Tabatabaei
(2013) formulated two analytical models based on MDPs for a sin-
gle-machine, single-produce workstation subject to random fail-
ure; the purpose of these models was to obtain optimal policies
using a cost function associated with three types of cost. More
information on optimal maintenance strategies can be found in
studies by Yeh and Lo (2001), Kyriakidis and Dimitrakos (2006),
Bedford, Dewan, Meilijson, and Zitrou (2011), and Fallah-Fini,
Triantis, Garza, and Seaver (2012).

From the volume of published literature, it is clear that the
semi-Markov Process (SMP) is commonly used to model repairable
systems in many maintenance policies (Çekyay & Özekici, 2010;
Burak & Sloan, 2013), which shows that the SMP can characterize
system dynamics and facilitate modeling a variety of systems well.
On the other hand, many authors view the costs associated with
maintenance, repair and replacement as a key factor in their work
(Smith & Dekker, 1997; Jia & Wu, 2009; Zhang & Wang, 2011).
However, for certain complex systems, such as space exploration
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and satellite systems, or complex control systems in steel or chem-
ical plants, system reliability is much more important than upkeep
costs. Under such circumstances, effort made to minimize upkeep
costs may not be as relevant. Hence, situations where costs are a
secondary factor are not taken into account in our study.

In addition to maintenance policies, the structure of a system
has a significant effect on the system availability and reliability.
Standby redundancy, as one of the important structures in reliabil-
ity theory, attracts a substantial amount of interest in the field of
system reliability and operational research. The common standby
structures include the 2-or 3-unit standby (Subramanian & Anan-
tharaman, 1995;Mahmoud & Moshref, 2010), the (2,n � 2) standby
(Papageorgiou & Kokolakis, 2007) and (Papageorgiou & Kokolakis,
2010), the k-out-of-N structure (Ding, Zuo, Tian, & Li, 2010;Ruiz-
Castro & Li, 2011; Smidt-Destombes et al., 2009;Li & Zuo, 2008)
and the M-for-N shared protection structure (Hirokazu & Atsushi,
2011). Among such structures, the 2-unit/component cold standby
structure studied in this paper is a practical aspect of standby
redundancy, and has been widely applied in engineering design,
such as in space exploration and satellite systems (Sinaki, 1994),
textile manufacturing systems (Pandey, Jacob, & Yadav, 1996), car-
bon recovery systems in fertilizer plants (Kumar, Kumar, & Mehta,
1996). It is worth mentioning that the issue studied in this paper
comes from the practical flattener control system in a steel plant
and the optimal results obtained have been applied to the PM pol-
icy of the flattener control system.

In view of the above discussion, in this paper, a novel optimal
PM policy for a cold standby system with two components and a
repairman is presented. In this study, a SMP and regenerative point
technique was used to model the system under some reasonable
assumptions and all possible states of the system and transition
probabilities between them were analyzed. The optimal PM cycle
was derived by maximizing the mean time from the initial state
to system failure in the form of the theorem. Finally, results from
a numerical example and simulation experiments, which were
used to validate the effectiveness of the optimal PM policy are
provided.

The remainder of this paper is organized as follows: in Section 2
the basic assumptions for system modeling are given, and all pos-
sible states of the system are determined. In Section 3, the semi-
Markov kernel of the system corresponding to transition probabil-
ities between states are further analyzed. In Section 4, the optimal
PM cycle is derived by maximizing the mean time from the initial
state to system failure. In Sections 5 and 6 a numerical example
and simulation experiment is performed, and a conclusion with a
brief summary is provided. Finally, in, Appendix A, the Proof of the-
orem 1 is given.

For ease of reference, some notations to be used in this paper
are given as follows:

2. Modeling description and assumptions

The system under consideration consists of a working compo-
nent and a cold-standby spare component. It should be noted that
the working and spare components are not different from each
other, meaning that the two components have the same distribu-
tion of time-to-failure. In addition, the system includes a repair-
man who is responsible for the repair of the failed component
and the PM of the working one. For simplicity, the following rea-
sonable and necessary assumptions of the system were made.

Assumption 1. Two components are the same type so that their
lifetimes are independent and identically distributed (i.i.d.). After
repair or maintenance, both components are considered to be ‘‘as
good as new’’. Repair and maintenance times are arbitrary and
independent. For simplicity of expression, one component is called
C1 and the other is called C2.

Assumption 2. Initially, the two components are both new and it
is supposed that C1 is in a working state and C2 is in a cold standby
state. If C1 fails, C2 begins to work instead of C1 instantaneously. At
this same time, the repairman begins repairing C1. The time to
switch from C1 to C2 is negligible or is not taken into account.

Assumption 3. The failed component, after having been repaired,
either begins to work or enters the cold standby state according to
the state of the other component.

Assumption 4. In order to keep components’ running properly,
the working component needs to receive PM periodically at times
kT(k = 1, 2, . . . , n) where T is a cycle length, provided that the spare
component is available. If the spare component is not available, the
PM is skipped until the next time for it to be done.

Assumption 5. When the working component fails while the
other is still being repaired or maintained, the system fails.

Under above assumptions, the various state of the system can
be straightforwardly defined as follows:

S0 A component works while the other is in cold standby.
Both components are new at the time of entry into this
state.

S1 A component works while the other is in repair.
S2 A component works while the other is in maintenance.
S3 A component is in repair or maintenance while the other

waits for repair or maintenance, this state represents
system failure.

Nomenclature

Ci component i i = 1, 2
F(t) the cumulative distribution function (CDF) of compo-

nent lifetime
G1(t) the CDF of repair time for failed component
G2(t) the CDF of maintenance time
1/k the failure rate of components
l1 the repair rate, the mean of G1(t)
l2 the maintenance rate, the mean of G2(t)
X the random variable denoting component lifetime
Y1 the random variable denoting repair time
Y2 the random variable denoting maintenance time
T the PM cycle

To the optimal PM cycle
XT the random variable denoting T
H(t) the CDF of XT

pij(t) the CDF for system transits from regenerative state Si to
Sj

pi(t) the CDF of time from entering Si to system failure
mi the mean of pi (t)
E the states space E = {Siji = 0, 1, 2, 3}
⁄ the convolution operator
^ the symbol denoting the result of Laplace transform for

a variable
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