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a b s t r a c t

New variants of greedy algorithms, called advanced greedy algorithms, are identified for knapsack and cov-
ering problems with linear and quadratic objective functions. Beginning with single-constraint problems,
we provide extensions for multiple knapsack and covering problems, in which objects must be allocated
to different knapsacks and covers, and also for multi-constraint (multi-dimensional) knapsack and cov-
ering problems, in which the constraints are exploited by means of surrogate constraint strategies. In
addition, we provide a new graduated-probe strategy for improving the selection of variables to be
assigned values. Going beyond the greedy and advanced greedy frameworks, we describe ways to utilize
these algorithms with multi-start and strategic oscillation metaheuristics. Finally, we identify how sur-
rogate constraints can be utilized to produce inequalities that dominate those previously proposed and
tested utilizing linear programming methods for solving multi-constraint knapsack problems, which
are responsible for the current best methods for these problems. While we focus on 0–1 problems, our
approaches can readily be adapted to handle variables with general upper bounds.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Greedy algorithms have long been a mainstay of methods for sin-
gle-constraint and multi-constraint knapsack and covering prob-
lems. These algorithms are often embedded within constructive
processes used in multi-start metaheuristics and also within linked
constructive and destructive processes in strategic oscillation meta-
heuristics. We introduce new variants of these algorithms, called ad-
vanced greedy algorithms, which can be implemented for problems
with linear and quadratic objective functions.

In the quadratic case, we observe that previous formulations of
greedy algorithms have conspicuous deficiencies and show how a
new graduated-probe strategy can be used to overcome them both
for greedy and advanced greedy methods. Though most strongly
motivated in the quadratic setting, this new strategy can also be
used to enhance variable-selection for problems with linear objec-
tives. Starting with single-constraint problems, we then introduce
extensions for more general multiple knapsack and multi-constraint
(multi-dimensional) problems. Processes for employing these
methods in strategic oscillation and multi-start approaches are also
described.

In the domain of multi-constraint knapsack problems, we show
how surrogate constraints can be used to provide inequalities that
dominate inequalities used by previous methods incorporating lin-
ear programming strategies, which have produced the best exist-

ing methods for these problems. Our primary focus deals with 0–
1 problems, though our methods can also be adapted for problems
with more general integer variables.

Our paper is organized as follows. Section 2 begins by examin-
ing the simple case of single-constraint 0–1 knapsack and covering
problems, including consideration of both linear and quadratic
objectives. Section 3 describes classical greedy methods for these
problems utilizing a framework that provides a foundation for later
extensions. The new advanced greedy algorithms are introduced in
Section 4, disclosing how these methods have the ability to elimi-
nate certain deficiencies of the classical methods (and other previ-
ous methods). This section also identifies a way to produce fast
updates for one of the main components of these methods.

Section 5 introduces the graduated-probe strategy and discloses
the manner in which it overcomes limitations of methods pro-
posed for quadratic problems. More general multiple knapsack
problems, which have recently become the focus of a number of
investigations, are addressed in Section 6. This section also de-
scribes how to reinforce such strategies in multi-start and strategic
oscillation approaches. Finally, Section 7 discusses multi-con-
straint knapsack problems, together with the surrogate constraint
strategies that generate inequalities to guide the solution process.

2. Single-constraint 0–1 knapsack and covering problems

Single-constraint 0–1 knapsack and covering problems with lin-
ear and quadratic objectives may be formulated as follows.
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Linear single-constraint knapsack (LK)

Maximize xo ¼
X
ðpjxj; j 2 NÞ ðLK0Þ

subject to
X
ðajxj; j 2 NÞ 6 ao ðK1Þ

xj 2 f0; 1g; j 2 N ðK2Þ

where ao > 0, and the profit coefficients pj and the constraint coeffi-
cients aj are likewise positive constants for all j 2 N = {1, . . . ,n}.
(Cases where some pj or aj coefficients are non-positive can easily
be converted to the positive coefficient form by complementing
variables or by observing that particular variables can be automat-
ically assigned 0 or 1 values in an optimal solution.) We assumeP
ðaj : j 2 NÞ > ao, since

P
ðaj : j 2 NÞ 6 ao implies (LK) has the

trivial solution xj = 1, all j 2 N.

Linear single-constraint cover (LC)

Minimize yo ¼
X
ðcjyj; j 2 NÞ ðLC0Þ

subject to
X
ðdjyj; j 2 NÞP do ðC1Þ

yj 2 f0; 1g; j 2 N ðC2Þ

where similarly do > 0, and the cost coefficients cj and the con-
straint coefficients dj are positive constants for all j 2 N = {1, . . . ,n}.
(Cases where some cj or dj values are non-positive can likewise be
converted to the positive coefficient form.) We assumeP
ðdj; j 2 NÞ > do since

P
ðdj; j 2 NÞ ¼ do implies (LC) has the trivial

solution yj = 1, all j 2 N and
P
ðdj; j 2 NÞ < do implies (LC) has no

feasible solution.

(LK) and (LC) are equivalent problems, as can be seen by replac-
ing xj by 1 � yj in the former or replacing yj by 1 � xj in the latter
and simplifying the resulting representation. (This produces con-
stant terms in the objective functions for the two problems, but
these do not affect the optimal solutions. The assumption ao > 0
in (LK) corresponds to stipulating

P
ðdj; j 2 NÞ > do in (LC), and

the assumption do > 0 in (LC) corresponds to stipulatingP
ðaj; j 2 NÞ > ao in (LK).) In spite of this equivalence, however,

the classical greedy algorithms for these problems do not yield
equivalent solutions, and we treat them separately by indicating
specific rules for each.

The quadratic versions of these problems arise by replacing the
objective functions of the linear versions as follows:

Quadratic single-constraint knapsack (QK)

Maximize xo ¼
X
ðpjxj; j 2 NÞ þ

X
ðpjhxjxh : j; h 2 NÞ

subject to ðK1Þ and ðK2Þ ðQK0Þ

Quadratic single-constraint cover (QC)

Minimize yo ¼
X
ðcjyj; j 2 NÞ þ

X
ðcjhyjyh : j; h 2 NÞ

subject to ðC1Þ and ðC2Þ ðQC0Þ

In these formulations we assume for convenience that pjj and cjj

are 0. This can be accomplished by setting pj :¼ pj + pjj and cj -
:¼ cj + cjj, which is justified by the observation that a 0–1 variable
z satisfies z2 = z. We also assume pjh and cjh are 0 for j > h, in this
case accomplished by setting pjh :¼ pjh + phj and cjh :¼ cjh + chj for
j < h (justified by the fact that xjxh = xhxj and yjyh = yhyj). This latter
assumption gives a means to save memory in storing data for the
quadratic problems.

It is also customary to assume the profit coefficients pj and pjh

and the cost coefficients cj and cjh are non-negative. However, this

is not necessary for our development, though we retain the
assumption that the aj and dj coefficients of (K1) and (K2) are po-
sitive. (The quadratic problems (QK) and (QC) are not equivalent
under the assumption of non-negative pjh and cjh coefficients. In
fact, equivalence between the two formulations requires cjh = �pjh.)

We begin by discussing the classical greedy algorithms as a pre-
lude to introducing the advanced greedy algorithms.

3. Classical greedy algorithms for the single constraint
problems

3.1. Algorithms for the linear objective single constraint problems

The classical greedy algorithms for (LK) and (LC) use the so-
called bang-for-buck ratios RKj = pj/aj and RCj = cj/dj whose rele-
vance for one-pass constructive methods was first noted in Dantzig
(1957). Effectively, the algorithms go through the RKj ratios in
descending order and the RCj ratios in ascending order, respec-
tively, to assign xj = 1 and yj = 1 until no more assignments are pos-
sible that preserve feasibility for (LK) and until feasibility is
achieved for (LC). We describe these algorithms in a form that is
convenient for introducing later extensions, without consideration
of details relating to efficient implementation (although
we later describe fast updating methods for elements that change).

Greedy (LK)
Initialize:
xj = 0 for all j 2 N
N1 = £ (N1 is the index set for variables xj currently set to
1)
RHS = ao (RHS is the current ‘‘right hand side’’)
No = {j 2 N: aj 6 RHS} (No is the index set for variables xj that
can feasibly
be set to 1 at a given iteration of the following loop)

While RHS > 0 and No – £

j⁄ = arg max(RKj: j 2 No)
xj� ¼ 1
N1 = N1 [ {j⁄}
RHS ¼ RHS� a�j
No = No � {j⁄}
No = {j 2 No: aj 6 RHS}

Endwhile
(Upon concluding, xj = 1 for j 2 N1 and xj = 0 otherwise.)

We remark that the set No does not have to be explicitly identi-
fied and updated in the context of the simple (LK) problem, since it
suffices to identify j⁄ by writing

j� ¼ arg maxðRKj : j 2 N � N1 : aj 6 RHSÞ

However, explicit reference to No is useful for the context where
knapsacks are generated by surrogate constraints in solving multi-
dimensional knapsack problems, as discussed in Section 7.

Greedy (LC)
Initialize:
yj = 0 for all j 2 N
N1 = £ (N1 is the index set for variables yj currently set to 1)
RHS = do (RHS is the current ‘‘right hand side’’)
While RHS > 0 and N1 – N

j⁄ = arg min(RCj: j 2 N � N1)
yj� ¼ 1
N1 = N1 [ {j⁄}
RHS ¼ RHS� d�j
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