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a b s t r a c t

We develop and implement linear formulations of general Nth order stochastic dominance criteria for
discrete probability distributions. Our approach is based on a piece-wise polynomial representation of
utility and its derivatives and can be implemented by solving a relatively small system of linear inequal-
ities. This approach allows for comparing a given prospect with a discrete set of alternative prospects as
well as for comparison with a polyhedral set of linear combinations of prospects. We also derive a linear
dual formulation in terms of lower partial moments and co-lower partial moments. An empirical appli-
cation to historical stock market data suggests that the passive stock market portfolio is highly inefficient
relative to actively managed portfolios for all investment horizons and for nearly all investors. The results
also illustrate that the mean–variance rule and second-order stochastic dominance rule may not detect
market portfolio inefficiency because of non-trivial violations of non-satiation and prudence.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic dominance (SD), first introduced in Quirk and Sapos-
nik (1962), Hadar and Russell (1969) and Hanoch and Levy (1969),
is a useful concept for analyzing risky decision making when only
partial information about the decision maker’s risk preferences is
available. The concept is used in numerous empirical studies and
practical applications, ranging from agriculture and health care to
financial management and public policy making; see, for example,
the extensive survey in the text book of Levy (2006). A selection of
recent studies in OR/MS journals includes Post (2008), Lozano and
Gutiérrez (2008), Blavatskyy (2010), Dupačová and Kopa (2012),
Lizyayev and Ruszczyński (2012), Lizyayev (2012) and Brown
et al. (2012).

SD imposes general preference restrictions without assuming a
functional form for the decision maker’s utility function. The SD
rules of order one to four are particularly interesting, because they
impose (in a cumulative way) the standard assumptions of non-
satiation, risk-aversion, prudence and temperance, which are nec-
essary conditions for standard risk aversion (Kimball, 1993). This
approach is theoretically appealing but not always easy to imple-
ment. In some special cases, a closed-form analytical solution ex-
ists, as is true, for example, for the textbook case of a pair-wise
comparison of two given prospects based on the second-order sto-
chastic dominance (SSD) rule.

However, more generally, a closed-form solution does not exist
and numerical optimization is required. For example, Meyer’s
(1977a,b) stochastic dominance with respect to a function
(SDWRF) requires solving an (small and standard) optimal control
problem. The rules of convex stochastic dominance (Fishburn,
1974) for comparing more than two prospects simultaneously also
require optimization. For example, Bawa et al. (1985) develop Lin-
ear Programming tests for convex first-order stochastic dominance
(FSD), convex SSD and an approximation for convex third-order
stochastic dominance (TSD). Shalit and Yitzhaki (1994), Post
(2003), Kuosmanen (2004) and Kopa and Chovanec (2008) develop
Linear Programming tests that compare a given prospect using SSD
with a polyhedral set of linear combinations of a discrete set of
prospects.

Unfortunately, a general algorithm is not available. How can we
test, for example, whether a given medical treatment is dominated
by convex fourth-order stochastic dominance (FOSD) relative to a
set of alternative treatments? How can we test whether a given
investment portfolio is FOSD efficient relative to a polyhedral set
of portfolios formed from a set of base assets? Without an algo-
rithm for these specific cases, we may be forced to use known tests
for less discriminating decision criteria. For example, we could use
a set of pair-wise FOSD tests to compare the evaluated medical
treatment with every alternative treatment. Similarly, we could
use pair-wise tests to compare the evaluated investment portfolio
with a large number of alternative portfolios, for example, using a
grid search or random search over the possibilities set. However,
pair-wise comparisons generally are less powerful than convex
SD, because a prospect can be non-optimal for all admissible utility
functions without being dominated by any alternative prospect. A
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further possible loss of power stems from using a discrete approx-
imation to a continuous choice set.

Section 2 of this study develops linear formulations of general
stochastic dominance rules. Our approach is based on a piece-wise
polynomial representation of utility and its derivatives. This repre-
sentation applies generally for higher-order SD rules (Nth order
SD), comparing a given prospect with a discrete set of alternative
prospects (convex NSD analysis), and comparing a given prospect
with a polyhedral set of linear combinations of prospects (NSD effi-
ciency analysis). Our analysis therefore represents a generalization
of the lower-order tests of Bawa et al. (1985) and Post (2003). We
can also deal with additional preference restrictions such as the
bounds on the level of risk aversion of Meyer (1977a,b) and the
bounds on utility curvature by Leshno and Levy (2002). The use
of piece-wise polynomial functions also generalizes results by Ha-
dar and Seo (1988) and Russell and Seo (1989) on simple represen-
tative utility functions for pairwise comparison based on lower-
order SD rules.

To arrive at a finite optimization problem, we focus on discrete
probability distributions. In empirical studies, we usually face dis-
crete sample distributions, and experimental studies generally use
prospects with a discrete population distribution. In addition,
many continuous distributions can be approximated accurately
with a discrete distribution. Our approach can be implemented
by solving a relatively small system of linear inequalities. The lin-
ear structure seems particularly convenient for the application of
statistical re-sampling methods in the spirit of Nelson and Pope
(1991) and Barrett and Donald (2003).

Our focus is on utility and its derivatives and on restrictions that
follow from utility theory. Still, Section 3 also derives linear dual
formulations that are formulated in terms of lower partial mo-
ments (Bawa, 1975) and co-lower partial moments (Bawa and Lin-
denberg, 1977) of the probability distribution. We focus on the
dominance classification of a given prospect and we do not at-
tempt to identify an alternative prospect that dominates the eval-
uated prospect. In the case of a discrete choice set, a non-
admissible prospect need not be dominated by any alternative
prospect. In addition, a prospect that dominates the choice of a gi-
ven decision maker need not be optimal for that decision maker,
and, moreover, the optimum need not dominate the current choice.
Finally, the dominance relation between a pair of prospects gener-
ally is less robust than the classification of a given prospect. For
these reasons, the search for a dominant prospect seems irrelevant
for our purposes. Still, the dual formulations are useful for compu-
tational efficiency and robustness analysis.

Section 4 applies a range of SD tests to historical stock return
data to compare the broad stock market portfolio with alternative
portfolios formed from a set of risky benchmark stock portfolios
and riskless Treasury bills. We analyze horizons ranging from
1 month to 10 years and consider the decision criteria of SSD,
TSD, FOSD, SDWRF, ASSD and mean–variance (M–V) analysis. The
analysis is relevant because a large class of capital market equilib-
rium models predict that the market portfolio is efficient. Another
reason for expecting market portfolio efficiency is the popularity of
passive mutual funds and exchange traded funds that passively
track broad stock market indices.

Our empirical analysis shows that the market portfolio is highly
and significantly inefficient by the TSD, FOSD, SDWRF and ASSD
criteria for every horizon. Few rational risk averters would hold
the broad market portfolio in the face of the historical return pre-
miums to active strategies. The appeal of active strategies only in-
creases with the horizon. Our results also illustrate that pair-wise
dominance comparisons and the SSD and M–V rules have limited
discriminating power and can generate misleading results in rele-
vant applications. The SSD criterion may fail to detect market port-
folio inefficiency for short horizons, because it penalizes small-cap

stocks for having a relatively high positive systematic skewness,
violating prudence. M–V analysis underestimates the level of mar-
ket portfolio inefficiency for long horizons, because it assigns neg-
ative weights to large positive market returns, placing a penalty on
outperformance during bull markets. In our application, these phe-
nomena lead to a non-trivial underestimation of the alphas for
small-cap stocks.

2. Linear formulation in terms of piece-wise polynomial utility

We consider M prospects with risky outcomes x1, . . . ,xM. A pros-
pect is defined here in a general way as an available choice alterna-
tive and it could be a given combination of multiple base
alternatives, for example, a combination of production methods,
financial assets or marketing instruments. Depending on the appli-
cation, the outcomes may be total wealth, consumption, income, or
any variable that can reasonably be assumed to enter as an argu-
ment to a utility function that obeys the maintained assumptions.
The outcomes are treated as random variables with a discrete,
state-dependent, joint probability distribution characterized by R
mutually exclusive and exhaustive scenarios with probabilities
pr > 0, r = 1, . . . ,R. We use xi,r for the outcome of prospect i in sce-
nario r. We collect all possible outcomes across prospects and
states in Y = {y: y = xi,r i = 1, . . . ,M; r = 1, . . . ,R}, rank these values
in ascending order y1 6 � � � 6 yS and use qi;s ¼ Pr½xi ¼
ys� ¼

P
r:xi;r¼ys

pr .
Decision makers’ preferences are described by N-times continu-

ously differentiable, von Neumann–Morgenstern utility functions
uðxÞ : D! R. We use un(x) for the nth order derivative,
n = 1, . . . ,N, and u0ðxÞ ¼ uðxÞ. To implement stochastic dominance
of order N P 1, we will consider the following set of admissible
utility functions:

UN ¼ fu 2 CN : ð�1Þn�1unðxÞP 0 8x 2 D; n ¼ 1; . . . ;Ng: ð1Þ

Thus, first-order dominance assumes non-satiation (u1(x) P 0,
"x 2 D); second-order dominance assumes also risk aversion
(u2(x) 6 0, "x 2 D); the third-order criterion adds prudence
(u3(x) P 0, "x 2 D) and fourth-order SD also assumes temperance
(u4(x) 6 0, "x 2 D). In some applications, zero values for the deriva-
tives may not be allowed, for example, in the cases of strict non-
satiation (u1(x) > 0, " x 2 D) and strict risk aversion (u2(x) < 0,
"x 2 D). The needed adjustments to our Linear Programming tests
are obvious substitutions of weak and strict inequalities. In our
experience, these adjustments have a negligible effect in empirical
applications. For the sake of brevity, we therefore ignore this issue
here.

For practical reasons, it is often useful to assume some sort of
standardization, such as u1(y1) = 1, in order to avoid numerical
problems when evaluating utility functions that approximate
u1(x) = 0 "x 2 D, or the indifferent decision maker. Since utility
analysis is invariant to positive linear transformations, such stan-
dardizations are harmless.

We distinguish between three types of SD relations: pair-
wise dominance relations, discrete convex dominance relations
and continuous convex dominance relations, or efficiency rela-
tions. These relations differ regarding to the assumed choice
possibilities: a single prospect, a discrete set of prospects, or
all convex combinations of a discrete set of prospects. Consider
first the case of pair-wise comparison between two given
prospects:

Definition 1 (Pair-wise Comparison). An evaluated prospect
i 2 {1, . . . ,M} is not dominated in terms of Nth order stochastic
dominance, N P 1, by an alternative prospect j 2 {1, . . . ,M} if there
exists an admissible utility function u 2 UN for which it is preferred
to the alternative:
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