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a b s t r a c t

The UTAs (UTilité Additives) type methods for constructing nondecreasing additive utility functions were
first proposed by Jacquet-Lagrèze and Siskos in 1982 for handling decision problems of multicriteria
ranking. In this article, by UTA functions, we mean functions which are constructed by the UTA type
methods. Our purpose is to propose an algorithm for globally maximizing UTA functions of a class of lin-
ear/convex multiple objective programming problems. The algorithm is established based on a branch
and bound scheme, in which the branching procedure is performed by a so-called I-rectangular bisection
in the objective (outcome) space, and the bounding procedure by some convex or linear programs. Pre-
liminary computational experiments show that this algorithm can work well for the case where the num-
ber of objective functions in the multiple objective optimization problem under consideration is much
smaller than the number of variables.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The subject for this article is the multiple objective program-
ming problem of the form

max f iðxÞ; i ¼ 1; � � � ; k
s:t: x 2 X � Rn:

ð1Þ

We assume throughout the article that k P 2, X is a compact convex
set and the functions fi : X ! R; i ¼ 1; � � � ; k, are linear or concave.
Furthermore, we define the mapping

f : Rn ! Rk; f ðxÞ ¼ ðf1ðxÞ; � � � ; fkðxÞÞ:

Usually, X is called the decision set, and the image of the set X under
f,

f ðXÞ :¼ fz 2 Rk : z ¼ f ðxÞ; x 2 Xg; ð2Þ

is called the outcome set of Problem (1).
The most important approach for handling Problem (1) is the

concept of efficient (or Pareto optimal) solutions. For applications,
theory and computational methods of efficient solutions, we refer
to Refs. [1–8,18,21–23] and references therein.

Another interesting and important approach to Problem (1) is
the concept of utility (or value) functions and utility function pro-
grams. The main idea of this school of thought is that each outcome
has a ‘utility’ to the decision maker, and the decision maker tends

to or should choose the one having the maximal utility. This ap-
proach consists of two consecutive stages:

(a) Construction of a utility function on the outcome set, and
(b) Development of algorithms for the global maximization of

the utility function.

For the first stage, the UTAs (UTilité Additives) type methods,
originally proposed by Jacquet-Lagrèze and Siskos [13] for han-
dling multicriteria decision making problems, play an important
part. These methods construct utility functions of the form

UðzÞ ¼
Xk

i¼1

UiðziÞ;

where for each i, Ui is a continuous, nondecreasing and piecewise af-
fine univariate function. Throughout this article, functions con-
structed by the UTA type methods are called UTA functions.

For improvements of the UTA type methods and other methods
for constructing utility functions we refer to e.g., [4,6–8,14–
17,19,20,22,23].

For the second stage, to our knowledge, there are only a few
methods for handling utility function programs. In [12], a modifi-
cation of the simplex algorithm was proposed to determine some
kind of local optimal solutions. A global optimization method for
solving general utility function programs was presented in [10].

The purpose of the present article is to propose a new algorithm
for globally solving the utility function program
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maxfUðzÞ : z 2 f ðXÞg ¼maxfUðzÞ : z ¼ f ðxÞ; x 2 Xg; ð3Þ

where U(z) is a UTA function. Our algorithm belongs to the class of
branch and bound methods, which is a successful tool in global
optimization, see e.g., [9–11]. In this algorithm, both basic opera-
tions, branching and bounding procedures, are established based
on the special structure of the UTA function U(z).

To apply our algorithm, we assume that any UTA function, con-
structed by the basic model of Jacquet-Lagrèze, and Siskos, or by
the new approaches, e.g., the UTA–GMS method in [7], the GRIP
method in [6], the ACUTA method in [4], is consistent by applying
a man–machine dialogue included in the UTA type philosophy.

In the next section, we outline briefly the basic UTA method and
give a detailed representation of the resulting UTA function. Sec-
tions 3–5 deal with basic operations that are used to establish
the finite branch and bound algorithm in Section 6. An illustrative
example and preliminary computational experiments are reported
in Section 7. Finally, some conclusions are given in Section 8.

2. The Basic UTA Method

The basic UTA method of Jacquet-Lagrèze and Siskos was devel-
oped for constructing additive utility functions of the form

UðzÞ ¼
Xk

i¼1

UiðziÞ; ð4Þ

where for every i, the univariate function Ui(zi) is continuous, non-
decreasing and piecewise affine in the interval [ti, Ti] with

ti 6 minffiðxÞ : x 2 Xg < maxffiðxÞ : x 2 Xg 6 Ti: ð5Þ

For arbitrary points z1; z2 2 Rk, by z1
6 z2 we mean that

z1
i 6 z2

i 8i ¼ 1; � � � ; k. Let R0 be a rectangle in Rk defined by

R0 :¼ fz 2 Rk : t 6 z 6 Tg ¼ fz 2 Rk : ti 6 zi 6 Ti; i ¼ 1; � � � ; kg:
ð6Þ

Then obviously the function U defined in (4) has the following non-
decreasing property in the rectangle R0:

z1; z2 2 R0; z1 P z2 ) Uðz1ÞP Uðz2Þ: ð7Þ

We present briefly the original idea of the basic UTA method.
UTA Method:

Step 1: Choose a finite set, B, of reference outcomes, (e.g., B con-
sists of outcomes of efficient solutions).

Step 2: Determine on B a preference ordering in the following
sense: for each pair a, b 2 B, one is convinced that exactly
one of following cases can occur:
(i) a is preferred to b, notation: a � b;
(ii) a is indifferent to b, notation: a � b.

Step 3: Divide interval [ti, Ti] into pi � 1 equal intervals [zi,j, zi,j+1],
j = 1, � � � , pi � 1, with zi1 = ti and zi;pi

¼ Ti.
Step 4: For each i, assume that Ui(zi) is continuous and affine in

each subinterval [zi,j, zi,j+1], j = 1, � � � , pi � 1. From this, for
each b 2 B and i = 1, � � � , k, there is an interval [zi,j, zi,j+1]
such that bi 2 [zi,j, zi,j+1], and it holds that

UiðbiÞ ¼ Uiðzi;jÞ þ
Uiðzi;jþ1Þ � Uiðzi;jÞ

zi;jþ1 � zi;j
ðbi � zi;jÞ: ð8Þ

Step 5: Assume that for each b 2 B, the function value U(b) is esti-
mated by

UðbÞ ¼
Xk

i¼1

UiðbiÞ þ eb; ð9Þ

where Ui(bi) is computed by (8), and eb denotes an error of the esti-
mation. Furthermore, assume that for each pair a, b 2 B, it holds that

a � b() UðaÞ � UðbÞ ¼ 0
a � b() UðaÞ � UðbÞP d;

�
ð10Þ

where d is a given positive number, (a potential error).
Step 5: Denote

ui;j ¼ Uiðzi;jÞ; i ¼ 1; � � � ; k; j ¼ 1; � � � ;pi: ð11Þ

Then the values ui,j are determined by solving the following linear
program:

min
X

b2B
eb subject to ð12Þ

Xk

i¼1

½UiðaiÞ � UiðbiÞ� þ ea � eb P d

for all pair a; b 2 B such that a � b

ð13Þ

Xk

i¼1

½UiðaiÞ � UiðbiÞ� þ ea � eb ¼ 0

for all pair a; b 2 B such that a � b

ð14Þ

ui;jþ1 � ui;j P 0 8i ¼ 1; � � � ; k; j ¼ 1; � � � ;pi: ð15Þ

ui1 ¼ 0 8i ¼ 1; � � � ; k
Xk

i¼1

ui;pi
¼ 1

ð16Þ

ui;j P 0 8ði; jÞ; ea P 0 8a 2 B: ð17Þ

Remark 1.

(a) The above linear program has
Pk

i¼1pi þ jBj variables. They
are ui,j, i = 1, � � � , k; j = 1, � � � , pi and eb, b 2 B.

(b) Constraints in (13) and (14) are equivalent to conditions in
(10).

(c) Constraints in (15) imply that the function Ui(zi) is nonde-
creasing for each i.

(d) Constraints in (16) imply that the function U(z) is normed in
the rectangle {z 2 Z:ti 6 zi 6 Ti, i = 1, � � � , k}, such that U(t) = 0
and U(T) = 1.

Let u� ¼ u�ij
� �

i¼1;���k;j¼1;���;pi

be an optimal solution of the linear

program constructed in Step 5. Then we obtain for each
i 2 {1, � � � , k} the function Ui(zi), which is a nondecreasing, continu-
ous and piecewise affine function given by

UiðziÞ ¼ ‘ijðziÞ for zi 2 ½zi;j; zi;jþ1�; j ¼ 1; � � � ;pi � 1; ð18Þ

where for each j = 1, � � � , pi � 1 the affine function ‘ij is defined by
(8), i.e.,

‘ijðziÞ ¼ aijzi þ bij with

aij ¼
u�i;jþ1 � u�i;j
zi;jþ1 � zi;j

and bij ¼ u�i;j �
u�i;jþ1 � u�i;j
zi;jþ1 � zi;j

zi;j:
ð19Þ

3. Reformulation of utility function program

Let U be a UTA function defined in the rectangle R0, (recall that
the rectangle R0 is defined by (6)). For the establishment of a
branch and bound algorithm for solving the utility function pro-
gram (3), we define a set Z � Rk by
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