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a b s t r a c t

Multi-start methods strategically sample the solution space of an optimization problem. The most suc-
cessful of these methods have two phases that are alternated for a certain number of global iterations.
The first phase generates a solution and the second seeks to improve the outcome. Each global iteration
produces a solution that is typically a local optimum, and the best overall solution is the output of the
algorithm. The interaction between the two phases creates a balance between search diversification
(structural variation) and search intensification (improvement), to yield an effective means for generating
high-quality solutions. This survey briefly sketches historical developments that have motivated the field,
and then focuses on modern contributions that define the current state-of-the-art. We consider two cat-
egories of multi-start methods: memory-based and memoryless procedures. The former are based on
identifying and recording specific types of information (attributes) to exploit in future constructions.
The latter are based on order statistics of sampling and generate unconnected solutions. An interplay
between the features of these two categories provides an inviting area for future exploration.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The methods that provide the origins of what we now call multi-
start procedures consist primarily of repeated applications of con-
structive methods. The best solution produced by these repeated
applications is then normally selected for implementation. Early
proposals can be found in the domains of heuristic scheduling
(Muth and Thompson, 1963; Crowston et al., 1963), the traveling
salesman problem (Held and Karp, 1970; Lawler et al., 1985), and
knapsack problems with single and multiple constraints (Senju
and Toyoda, 1968; Wyman, 1973; Kochenberger et al., 1974). It
would be possible to go back even farther in time and identify var-
ious methods used in statistics and calculus as instances of utiliz-
ing repeated constructions to produce a preferred candidate,
although such methods were not used to address problems in
the realm of optimization as we view it today.

More recently, Glover (1977) makes several connections to mul-
ti-start search by means of a framework in which multi-start
search includes local search to improve the starting solutions.
Within this framework, procedures are given for generating start-
ing values for variables and for generating values perturbed from
other starting points. By varying the rules for the perturbation,

these strategies include customary local search approaches for pro-
ducing re-starts. A series of extensions of this framework are given
in Glover (1986, 1989, 2000), addressing controlled randomization,
learning strategies, induced decomposition, and adaptive memory
processes (as introduced in tabu search). Emphasis is placed on the
interaction between intensification and diversification as a means
for creating a more effective search process. Several parts of the
discussion bear on the area of multi-start methods. Controlled ran-
domization classically takes two forms. The first is the well-known
random restart approach, which injects a randomizing element into
the generation of an initial starting point to which a heuristic is
subsequently applied. The second classical version of this approach
is the random shakeup procedure which, instead of restarting, peri-
odically generates a randomized series of moves that leads the
heuristic from its customary path into a region it would not other-
wise reach.

Early multi-start methods from the optimization setting can be
interpreted as using a binary representation of decision variables,
starting from a null solution and selecting variables to set to 1, thus
identifying assignments of jobs to machines, or edges to tours, or
items to compose a knapsack, and so forth. This construction pro-
cess continued until obtaining a complete or maximally feasible
construction, at which point all remaining variables were implic-
itly assigned values of 0. We adopt this perspective of assigning
values to zero-one variables as a basis for describing constructive
processes within multi-start methods in general, allowing for the
added provision of considering associated destructive processes
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that instead operate by successively assigning values of 0 to
selected variables (where these variables would normally be
assigned values of 1 in constructive processes). Different coding
schemes can be used to encompass a vast array of problems within
this framework, even in cases where a binary formulation that
casts a problem as a mathematical program would be inappropri-
ate or counterproductive (e.g., due to the complexity of describing
the problem objective or constraints within a zero-one formula-
tion). Later in this section, we make use of one such coding scheme.
Aggregation and disaggregation methods can also be expressed
within this framework by defining zero-one variables within
hierarchies, but we will not focus on such approaches here.

The first multi-start methods were typically based on imple-
menting the re-starting step by randomly varying the choice of
variables to receive a unit value, or at the other extreme by simply
going through a pre-defined list of choice rules and applying a
currently selected rule to build the current construction. In
problem contexts where it was possible to modify a completed
construction by moves that did not hopelessly destroy feasibility,
the approach that is now commonly given the name of local search
or neighborhood search was sometimes applied in conjunction with
the constructive processes in an effort to improve the solutions
generated. More recently, this marriage of constructive and local
search procedures has become the customary way to apply
multi-start methods, such as in the GRASP heuristics which we
examine later in this survey. The motivation of enhancing
constructed solutions is additionally joined by the motivation of
using the varied re-constructions as a means of diversifying the
solutions that launch the local search. In short, multi-start meth-
ods from the modern perspective embody a blend of intensification
and diversification, and it is generally acknowledged that the
nature of this blend is a primary determinant of the effectiveness
of the overall method.

In this survey we will chiefly focus on the features that have
been found to characterize some of the best multi-start meth-
ods, rather than attempting to work our way through the back
alleys of all the various methods that have been proposed over
time. Among the substantial range of ways for classifying
multi-start methods, we elect to employ a classification that di-
vides multi-start methods into two main groups, consisting of
memory-based versus memoryless procedures. A useful out-
come of this classification is that it permits us to conveniently
differentiate certain innovations that have provided important
advances, according to our focus on the multi-start methods
that currently rank among the leading algorithms of this
genre.

Multi-start procedures were originally conceived as a way to
exploit a local or neighborhood search procedure, by simply apply-
ing it from multiple random initial solutions. Modern multi-start
methods usually incorporate a powerful form of diversification in
the generation of solutions to help overcome local optimality.
Without this diversification, such methods can become confined
to a small region of the solution space, making it difficult, if not
impossible, to find a global optimum.

The explicit use of memory structures constitutes the core of a
large number of intelligent solvers, including tabu search (Glover,
1989), scatter search (Laguna and Martí, 2003), and path-relinking
(Ribeiro and Resende, 2012). These methods, generically referred
to as adaptive memory programming, exploit a set of strategic mem-
ory designs. On the other hand, we can also find successful meta-
heuristics, such as simulated annealing (Kirkpatrick et al., 1983),
noising methods (Charon and Hudry, 2002), and GRASP (Feo and
Resende, 1995), with no memory structure in their original de-
signs. To focus our attention on memory-based and memoryless
multi-start methods, we target adaptive memory programming
and GRASP heuristics.

The re-start mechanism of multi-start methods can be superim-
posed on many different search methods. Once a new solution has
been generated, a variety of options can be used to improve it,
ranging from a simple greedy routine to a complex metaheuristic-
based heuristic. An open question in order to design a good search
procedure is whether it is better to implement a simple improving
method that allows a great number of global iterations or, alterna-
tively, to apply a complex routine that significantly improves a
few generated solutions. A simple procedure depends heavily on
the initial solution but a more elaborate method takes much more
running time and therefore can only be applied a few times, thus
reducing the sampling of the solution space.

The remainder of this paper is organized as follows. In Section 2
we introduce notation for combinatorial optimization and provide
pseudo-codes for solution construction procedures and multi-start
algorithms. Adaptive memory programming methods, which focus
on exploiting a set of strategic memory designs, are addressed in
Section 3. Section 4 reviews greedy randomized and GRASP mul-
ti-start methods and makes a connection between these methods
and the path-relinking strategy for search intensification. Conclud-
ing remarks are drawn in Section 5.

2. Combinatorial optimization

We consider in this survey a combinatorial optimization prob-
lem defined by a finite ground set E = {1, . . . , n}, a set of feasible
solutions F # 2E, and an objective function f : 2E ! R. In its mini-
mization version, we search an optimal solution S⁄ 2 F such that
f(S⁄) 6 f(S), "S 2 F. The ground set E, the cost function f, and the
set of feasible solutions F are defined for each specific problem.
For instance, in the case of the traveling salesman problem, the
ground set E is that of all edges connecting the cities to be visited,
F is formed by all edge subsets that determine a Hamiltonian cycle,
and f(S) is the sum of the costs of all edges in S. Another example is
the maximum clique problem, where the ground set E is the set of
all vertices of the graph, F is the set of all subsets of E for which all
vertices are mutually adjacent, and f(S) is the cardinality of the cli-
que S 2 F.

We consider next a simple algorithm to construct a feasible
solution S 2 F # 2E for a large class of combinatorial optimization
problems. Infeasible solutions are those that contain certain sub-
sets of 2E and we restrict ourselves to problems for which we can
easily identify infeasibilities by detecting the presence of any of
these subsets in the solution under construction. This setup
encompasses many combinatorial optimization problems, includ-
ing problems such as set covering, maximum clique, quadratic
assignment, and traveling salesman. For example, in the case of
the traveling salesman problem, a subset of the edges correspond-
ing to a subtour indicates infeasibility. For the maximum clique
problem, any set of vertices whose elements are not mutually adja-
cent indicates infeasibility.

Algorithm 1. Pseudo-code for a solution construction procedure.
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