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a b s t r a c t

Resource allocation is a relatively new research area in survey designs and has not been fully addressed in
the literature. Recently, the declining participation rates and increasing survey costs have steered
research interests towards resource planning. Survey organizations across the world are considering
the development of new mathematical models in order to improve the quality of survey results while tak-
ing into account optimal resource planning. In this paper, we address the problem of resource allocation
in survey designs and we discuss its impact on the quality of the survey results. We propose a novel
method in which the optimal allocation of survey resources is determined such that the quality of survey
results, i.e., the survey response rate, is maximized. We demonstrate the effectiveness of our method by
extensive numerical experiments.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Surveys are used all around the world to measure socio-
economic status and well-being of people, to test theories, or to
make investment decisions, driven by the impossibility of observing
the entire population of interest (see [6]). No matter what the
framework of a survey is, its success relies on the active participation
of the sampled households and businesses. Nonresponse occurs
when members of a sample cannot or will not participate in the
survey. The impact of nonresponse appears in the inability of com-
puting a full-sample estimator of the population mean. Thus, a
bundle of practical issues is created, including bias in point esti-
mates, bias in estimators of precision, and inflation of the variance
of point estimators. The error caused by nonresponse is one of the
several sources of error in surveys and it has attracted a great deal
of interest among researchers across the world (see [6]). An appar-
ent solution to the problem is to increase the frequency of attempts
to gather information from reluctant sample members. Under
these circumstances, the costs of conducting surveys increase sig-
nificantly, which leads to new problems, such as budget overruns.
Therefore, a constant scientific challenge to the survey community
concerns developing new survey designs to accommodate the
presence of both nonresponse and high costs.

Modeling the bundle of processes behind a survey and under-
standing the numerous interactions between these processes have

been a constant obstacle for researchers in their attempts to design
quality but cost-effective surveys. As a consequence, only few pro-
cesses have been investigated from a cost perspective, e.g., call
scheduling in [9]. More advanced studies investigate the relation-
ship between costs, quality and few survey features (e.g., the inter-
view mode, the schedule of calls). For example, in [7,11], the main
idea is to identify a set of design features that potentially influence
the survey costs and errors in the estimates and to monitor them
throughout the survey run. This information helps in subsequent
phases to alter the design features such that a desired balance be-
tween costs and errors is achieved.

When person or household characteristics (e.g., social and
financial) are employed to adjust the design features to a given
set of characteristics (i.e., different design features can be applied
to sample units with different characteristics) the resulting survey
design is termed adaptive (introduced in [16,14]). Adaptive designs
render realistic survey models and can be used to capture the
interactions between survey features, sample unit characteristics,
survey costs and quality.

In the present paper, adaptive survey designs are analyzed from
the perspective of resource allocation problems. To our knowledge,
this is the first paper that addresses designing surveys from a re-
source allocation perspective. Given a budget, a set of household
characteristics, and a list of survey features that influence costs
and quality, we model the allocation of survey resources such that
quality is maximized while costs meet the budget constraint. Our
interest in the problem is motivated by the increased difficulty
(e.g., higher costs, and higher nonresponse) survey organizations
are faced with in order to obtain high-quality survey estimates.
Statistics Netherlands is among the first organizations to consider
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redesigning their surveys such that planning of resources is taken
into account.

Resource allocation problems can be found in a wide range of
applications. In [12], the author investigates applications where
the resource allocation can be modeled as a continuous convex
nonlinear problem. Algorithms to solve such problems are also sur-
veyed and they most often involve finding the optimal value of the
Lagrange multiplier for the explicit constraint (mainly through
some type of line search). There are also numerous applications
that require a relaxation of the condition on strict convexity and
differentiability of the cost constraints, which increases signifi-
cantly the complexity of the problem. The auction algorithm pre-
sented in [1] finds a near optimal solution of this problem in
finite time.

In its integer or mixed-integer formulation, the resource alloca-
tion problem has an NP-complete worst case complexity (see [8]).
Therefore, only few such applications have been addressed in the
literature, e.g., optimal sample allocation in stratified sampling
(see [10,3]), manufacturing capacity planning (see [4]). The pro-
posed algorithms take advantage of the convexity in the objective
function and/or constraints. Applications where the objective func-
tion and/or the constraints include separable nonconvex functions
are often encountered (e.g., due to economies of scale). In this case,
additional difficulties in solving the problem are posed by the pres-
ence of several local optima. In [5], an approach is suggested to
solve such problems, namely solve a convex lower bounding
problem (e.g., the convex envelope) at every node of the branch-
and-bound search tree. Using the branch-and-bound framework
developed by [2], the optimal solution is reached in a finite number
of iterations. However, no implementation results or optimality
gap assessments are reported.

The resource allocation problem for survey designs has specific
features that lead to a formulation as a nonconvex integer nonlin-
ear problem, which prohibits the application of many algorithms
that are found in the literature. A possible approach could be to
implement solutions of convex approximations of the problem,
however, this may result in major errors in survey estimates. We
present an algorithm that solves the problem to optimality using
Markov decision theory. The algorithm reaches the optimal solu-
tion in a finite number of iterations. The numerical experiments
discussed here displayed short computational times on an Intel
Xeon L5520 processor.

The remainder of the paper is structured as follows. Section 2
discusses the mathematical model and Section 3 discusses the
algorithm to derive optimal adaptive survey design policies. Sec-
tion 4 presents a range of practical problems that can be han-
dled through this model and solution method. Numerical
examples of these situations are given in Section 5. Section 6
concludes the results of the paper and gives directions for future
research.

2. Problem formulation

Consider a survey sample consisting of N units that can be clus-
tered into homogeneous groups based on characteristics, such as
age, gender, and ethnicity (information that can be extracted from
external sources of data). Let G ¼ f1; . . . ;Gg be the set of homoge-
neous groups with size Ng for group g 2 G in the survey sample. The
survey fieldwork is divided into time slots, denoted by the set
T ¼ f1; . . . ; Tg, at which units in a group can be approached for a
survey. The survey itself can be conducted using certain interview
modes, such as a face-to-face, phone, web/paper survey; the set of
different modes is denoted by M¼ f1; . . . ;Mg. At each time slot
t 2 T one can decide to approach units in group g 2 G for a survey
using mode m 2 M. In doing so, successful participation in the sur-
vey depends on first establishing contact, and then be responsive

by answering the questionnaire. From historical data group-depen-
dent contact probabilities pg(t,m) and participation probabilities
rg(t,m) can be estimated, which we consider as given quantities
in our problem. Note that from historical data it can also be ob-
served that certain time slots (e.g., morning, evening) have an
influence on the availability of the unit and the willingness to
respond. Therefore, to employ most of the available information,
the contact and response probabilities are modeled at the level of
time slots for each group as well rather than the mode only.

Denote by xg(t,m) a binary 0–1 decision variable that denotes if
units in group g are approached for a survey at time t using mode
m. Note that at time t only one mode can be employed to approach
a group, yielding the constraint

P
m2Mxgðt;mÞ 6 1. When a success-

ful contact is established and the unit agrees to participate, the
survey ends with success; this happens with probability pg(t,m)
rg(t,m). Note that we assume independence between participation
and contact. However, if the unit refuses participation after suc-
cessful contact, the unit is not considered for a future survey ap-
proach; this happens with probability pg(t,m)(1 � rg(t,m)). Only
in the case that the unit is not contacted successfully, the unit
can be considered for a future survey approach (see Fig. 1); this
happens with probability 1 � pg(t,m). Thus, if the unit is ap-
proached again at time t0 using mode m0, then the probability of
a successful approach is (1 � pg(t,m))pg(t0,m0)rg(t0,m0), and the
probability of a contact failure is (1 � pg(t,m))(1 � pg(t0,m0)). In
general, the probability that a contact fails up to time t0 is denoted
by fg(t0) given by

fgðt0Þ ¼
Yt0

t¼1

Y
m2M
½xgðt;mÞð1� pgðt;mÞÞ þ ð1� xgðt;mÞÞ�

¼
Yt0

t¼1

Y
m2M
½1� xgðt;mÞpgðt;mÞ�:

Note that this is a highly non-linear expression in the decision
variables, which can be recursively computed by

fgðt0Þ ¼
Y

m2M
½xgðt0;mÞð1� pgðt0;mÞÞ þ ð1� xgðt0;mÞÞ�fgðt0 � 1Þ

¼
Y

m2M
½1� xgðt0;mÞpgðt0;mÞ�fgðt0 � 1Þ; ð1Þ

using the fact that fg(0) = 1. Using this definition, the response rate
for group g can then be computed by

X
t2T

X
m2M

fgðt � 1Þ xgðt;mÞpgðt;mÞrgðt;mÞ:

The clustering of the N units usually results in groups that are
not of the same size or importance. Therefore, the response rates
for the groups are usually weighted by a factor wg (e.g., wg = Ng/N
is taken in practice). Hence, the objective of the decision maker
becomes to maximize

X
g2G

X
t2T

X
m2M

wgfgðt � 1Þxgðt;mÞpgðt;mÞrgðt;mÞ; ð2Þ

by setting the decision variables xg(t,m) optimally. The decision
variables are subject to constraints, though, due to scarcity in re-
sources. In practice, due to resource management constraints, the
number of times that a group can be approached by mode m is lim-
ited to �kgðmÞ times, leading to the constraint

P
t2T xgðt;mÞ 6 �kgðmÞ.

By combining the objectives with all the constraints, we can draft
our optimization problem as a binary programming problem in
the following manner.

116 M. Calinescu et al. / European Journal of Operational Research 226 (2013) 115–121



Download English Version:

https://daneshyari.com/en/article/478332

Download Persian Version:

https://daneshyari.com/article/478332

Daneshyari.com

https://daneshyari.com/en/article/478332
https://daneshyari.com/article/478332
https://daneshyari.com

