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a b s t r a c t

In the presence of covariates, the cost-effectiveness analysis of medical treatments shows that the opti-
mal treatment varies across the patient population subgroups, and hence to accurately define the sub-
groups is a crucial step in the analysis. A patient subgroup definition using only influential covariates
within the potential set of patients covariates established by the expert has recently been proposed,
and the influential covariates were chosen from the univariate distributions of the effectiveness and
the cost, conditional on the effectiveness. In this paper, we argue that the Bayesian variable selection pro-
cedure should be developed using the bivariate distribution of the cost and the effectiveness, which is not
the usual practice. This new approach, provides results with wider applicability and more understandable
without a significative increase in the complexity of the procedure. For real and simulated data sets, opti-
mal treatments for subgroups are found, and compared with that from previous methods.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Cost-effectiveness analysis refers to the statistical decision
problem of choosing a medical treatment among m competitors
by taking into account both the cost and the effectiveness of the
treatments. This is an important optimization problem extensively
treated in health economic literature (see, for instance, Barton et al.
(2008) and references therein) although unfortunately underrepre-
sented in operational research literature in spite of the papers by
Brailsford and Harper (2008), Moreno et al. (2010b, 2012) and
Pesch and Woeginger (2012).

The states of nature of this decision problem are the treatments
net benefit random vector z = (z1, . . ., zm), a m-dimensional vector
in which the ith component, zi, is defined as zi = R � ei � ci, where
ci and ei are the cost and the effectiveness of treatment Ti, and R
the utility assigned to a unit of effectiveness expressed in monetary
units. We note that, conditional on a quantity R, which is fixed by
the health provider, the distribution of the net benefit is deter-
mined by the bivariate distributions of the cost and the effective-
ness of the treatments involved in the analysis.

Typically, the distribution of the cost and the effectiveness of
the treatments fi(ci, eijhi, x), i = 1, . . ., m, where h1, . . ., hm are

unknown parameters and x = (x1, . . ., xp) a set of p potential patient
covariates, so the distribution of the net benefit z varies across
patients. Therefore, the optimal treatment is a function of x and
this motivates the subgroup analysis (Sculpher and Gafni, 2001;
NICE, 2008; Espinoza et al., 2011). In addition, the optimal treat-
ment dramatically varies across subgroups (Moreno et al., 2012),
and hence to accurately define the existing patient population sub-
groups is of utmost importance. The underlying statistical problem
of defining subgroups is the so-called variable selection problem.

Patients population subgroups have been defined in the health
economic literature mostly using a statistical formulation that only
permits the consideration of discrete covariates (Stinnett and
Mullahy, 1998; Pocock et al., 2002; Willan et al., 2004; Nixon and
Thompson, 2005; Sculpher, 2008; Manca et al., 2010; Gomes
et al., 2012a,b, among others). In Moreno et al. (2012) the patient
population subgroups were defined for covariates either
continuous or discrete, and it was proposed using only a subset of
influential covariates selected among the potential set of them with
the help of a Bayesian variable selection procedure.

1.1. Motivation for a bivariate variable selection procedure

The bivariate sampling linear model for the cost and the effec-
tiveness is typically represented as the product of a linear model
for the effectiveness and a linear model for the cost conditional
on the effectiveness, which now plays the role of a covariate,
through the generic decomposition of the joint sample density
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function f(c,ejh,x) = f(ejh1,x)f(cje,h2,x), where h, h1, and h2 are un-
known parameters. Usually, the marginal sampling distribution
for the effectiveness is assumed to be a normal regression, and
for the cost, conditional on the effectiveness, was either a normal
or a lognormal regression.

In Moreno et al. (2012), the variable selection was carried out
using the decomposition of the bivariate cost-effectiveness sam-
pling model mentioned above. By so doing univariate models
f(ejh1,xse) and f(cje,h2,xsc) were obtained, where xse(�x) denotes
the influential covariates selected for the effectiveness distribution
and xsc(�x) for the conditional distribution of the cost. On the other
hand, let f(c,ejh,xsb) be the resulting model after applying the vari-
able selection procedure to the bivariate distribution, where xsb is
the influential subset of covariates for the joint density.

The difficulty with these three models comes from the fact that
the coherence equality

f ðc; ejh; xsbÞ ¼ f ðejh1;xseÞ � f ðcje; h2;xscÞ

does not necessarily hold, unless the subsets xsb, xse and xsc

coincide.
Furthermore, even when the three subsets of covariates coin-

cide it is not clear how the underlying uncertainty in choosing
the covariates in the marginal density of the effectiveness is prop-
agated to the conditional distribution of the cost, and hence it is
not clear how to compute the total variable selection uncertainty.
We note that the model space for the effectiveness, in which model
selection is carried out, contains 2p models while the model space
for the cost, conditional on the effectiveness, contains 2p+1 models.
Therefore, our uncertainties are set in different probability spaces
making it difficult to evaluate the total uncertainty in the statistical
variable selection procedure. This has undesirable implications. For
instance, inferences based on model averaging cannot be consid-
ered when the covariates are selected from the univariate decom-
position because of the weights are not well defined.

We remark that the subsets xsb, xse and xsc do not necessarily
coincide as the following example shows. This example is based
on a real clinical trial carried out in Hospital Clinic and Hospital
de Bellvitge of Barcelona, Spain.

Example 1. This is an example based on a real data from a
randomized clinical trial (Hernández et al., 2003) that compares
two alternative treatments for exacerbated chronic obstructive
pulmonary disease (COPD) patients. It was postulated that home
hospitalization, treatment T2, of selected chronic obstructive
pulmonary disease exacerbations admitted at the emergency room
could facilitate a better outcome than conventional hospitalization,
treatment T1. For patients under treatment T2 integrated care was
delivered by a specialized respiratory nurse with the patient’s free-
phone access to the nurse ensured for an 8-week follow-up period.
We use information from 167 patients with COPD exacerbations
over a 1-year period (1st November 1999 to 1st November 2000)
among those admitted to the emergency department of two
tertiary hospitals, Hospital Clinic and Hospital de Bellvitge of
Barcelona, Spain. The two primary criteria for inclusion in the
study were COPD exacerbation as a major cause of referral to the
emergency room and absence of any criteria for imperative
hospitalization as stated by the British Thoracic Society guidelines.
The number of patients randomly allocated to treatment T1 was 70
and 97 to T2.

The six potential covariates considered in the clinical trial were
the following: Age, Sex, Smoking habit, forced expiratory volume in
one second (FEV), exacerbations requiring in-hospital admission
(HOSV), and the score at the beginning of the study (SGRQ1).

Table 1 shows the variables selected for the bivariate normal
model f(c,ejh,x) and for the two-steps univariate procedure. The

Bayesian variable selection procedure for the bivariate model is the
one given in Section 2, and the Bayesian procedure for the
univariate models is that given in Moreno et al. (2012).

The second row of Table 1 gives the influential variables for the
treatments using the bivariate normal model, and in the third row
the influential variables for the decomposed model. The conclusion
we draw for treatment T1 is that both ways of selecting variables
convey the same message. However, for treatment T2 the influen-
tial covariates for the bivariate model do not coincide with the
ones selected when using the univariate models.

Remark 1. We are not saying that there is something wrong in the
decomposition f(c,ejh,x) = f(ejh1,x) � f(cje,h2,x). Our concerns refer
to the propagation of the uncertainty in the two-step variable
selection procedure when using the decomposed model represen-
tation, and whether this coherence decomposition is fullfiled if x is
changed in the right hand side of the equation.

To avoid the above difficulties we suggest returning to the ori-
ginal bivariate distribution f(c,ejh,x) and selecting the covariates
directly from this model. In this setting we have only one model
space containing 2p bivariate models and the above mentioned dif-
ficulties disappear.

The price we pay for defining subgroups with the variables se-
lected for the bivariate variable (c,e) is the slightly higher complex-
ity of the underlying sampling model that now becomes a 1 � 2
matrix-variate normal (or lognormal) distribution.

1.2. Notation

Let f(yjh,x) be the bivariate distribution of the vector of cost and
effectiveness y = (c,e)t of a generic treatment T, where h is an un-
known parameter vector, and x = (x1, . . ., xp)t a vector of p potential
covariates. We denote by f(zjR,h,x) the distribution of z = R � e � c,
the net benefit of the treatment, which is obtained from the distri-
bution f(yjh,x). While the deterministic quantities R and x are ob-
servable, the parameters h are unobservable and have to be
eliminated in f(zjR,h,x). We can do that with the help of a dataset
data = (y1, . . ., yn,X), i.e. a sample of y of size n having a n � p design
matrix X.

In a frequentist setting, the unknown parameter his replaced by
the maximum likelihood estimator ĥðdataÞ to obtain the predictive
data dependent distribution f ðzjR; ĥðdataÞ;xÞ, and in the Bayesian
approach the parameter his assumed to be distributed following
a prior distribution p(h) that we update to the posterior distribu-
tion p(hjdata). Then, h is eliminated by integration with respect
to the posterior p(hjdata) to obtain

f ðzjR; data;xÞ ¼
Z

f ðzjR; h; xÞpðhjdataÞdh: ð1Þ

This predictive distribution of the net benefit (1) is the one to be
used in the Bayesian cost-effectiveness decision problem. We note
that under either the frequentist or the Bayesian viewpoint, the
key distribution in the cost-effectiveness analysis is the posterior
predictive density of the net benefit.

Table 1
Influential variables for treatments T1 and T2, where e refers to the univariate linear
regression model for effectiveness and cje denotes the linear regression model for cost
given the effectiveness.

Model Treatment T1 Treatment T2

Bivariate procedure {SGRQ1, Age, FEV} {SGRQ1, FEV}
Two-steps univariate e: {SGRQ1, Age} e: {SGRQ1, FEV}
conditioned procedure cje: {FEV} cje: {SGRQ1, Age}
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