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a b s t r a c t

This paper deals with the single-item capacitated lot sizing problem with concave production and storage
costs, and minimum order quantity (CLSP-MOQ). In this problem, a demand must be satisfied at each per-
iod t over a planning horizon of T periods. This demand can be satisfied from the stock or by a production
at the same period. When a production is made at period t, the produced quantity must be greater to than
a minimum order quantity (L) and lesser than the production capacity (U). To solve this problem opti-
mally, a polynomial time algorithm in O(T5) is proposed and it is computationally tested on various
instances.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

This paper deals with a generalization of the single-item capac-
itated lot sizing problem (CLSP) with fixed capacity. The CLSP con-
sists in satisfying a demand at each time period t over a planning
horizon T. The demand is satisfied from the stock or by a produc-
tion. Costs incur for each production and when an item is stored
between two consecutive periods. A fixed maximum production
capacity (U) must be respected. The problem we consider in this
paper contains a minimum order quantity constraint. This con-
straint imposes that if a production is done at a given period, the
quantity must be greater to or equal than a minimum level L.
The U and L values are constant for the T periods. This problem is
noted CLSP-MOQ in the following:

The single-item capacitated lot sizing problem is known to be
NP-Hard [2]. However, some cases are polynomially solvable. This
is the case when the capacity is fixed over the T periods. Florian
and Klein [6] considered a case where production and holding cost
functions are concave. They proposed an exact method with a time
complexity in O(T4). Later van Hoesel and Wagelmans [12] im-
proved the complexity of the algorithm in O(T3) when the holding
costs are linear. A complete survey on the single-item lot sizing
problem can be found in [3].

The CLSP-MOQ is relevant in some industrial contexts. Lee [8]
studied an industrial problem where a manufacturer imposes a
minimum order quantity to its supplier. The author took an exam-
ple where the buyer has to choose a supplier among a manufac-
turer using MOQ constraints and a local dealer. The local dealer

supplies the products in just-in-time with a higher cost per unit.
The author designed an O(T4) algorithm which has been tested
on industrial data. Porras and Dekker [11] studied an industrial
case where the producer imposes minimum order quantities
(MOQ) to produce the items. The company uses containers to ship
the products, and set-up costs were not specified explicitly. Conse-
quently, in order to save fixed costs, the producer imposes the
MOQ constraint, which plays the role of set-up cost. Zhou et al.
[13] analyzed a class of simple heuristic policies to control stochas-
tic inventory systems with MOQ constraints. They also developed
insights into the impact of MOQ constraints on repeatedly ordered
items to fit in an industrial context.

The first studies on the MOQ constraints were from Constantino
[5] and Miller [9]. They analyzed these constraints from a polyhe-
dral point of view. Constantino derived strong inequalities which
described the convex hull of the solutions, considering the produc-
tion level as a continuous variable. Miller [9] replaced the produc-
tion level by the amount of product that is produced in excess of
the lower bound. Thus he studied the facets of the solutions’s con-
vex hull. He focused on multi-item problems and he proved that
the single period relaxation is NP-hard. Chan and Muckstadt [4]
studied a production-inventory system in which the production
quantity is constrained by a minimum and a maximum level in
each period. However, the production level cannot be zero. They
characterized the optimal policy for finite and infinite time hori-
zons. The first exact polynomial time algorithm was recently
developed by Okhrin and Richter [10]. They solved a special case
of the problem in which the unit production cost is constant over
the whole horizon and then can be discarded. Furthermore, they
assumed that the holding costs are also constant over the T periods.
Considering this restriction, they derived a polynomial time
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algorithm in O(T3). Li et al. [7] studied the single item lot sizing
problem with lower bound and described a polynomial algorithm
in O(T7) to solve the special case with concave production and stor-
age cost function.

In this study, we extend Okhrin and Richter’s result [10] to the
problem with concave production and holding costs. We proposed
an optimal algorithm called HMP with a time complexity in O(T5).
The paper is organized as follows: Section 2 describes the problem
and introduces the notations. In Section 3, we give some defini-
tions and present the properties that allow us to solve the problem
in polynomial time. The algorithm and its time complexity study
are given. In Section 4, the efficiency of the method is tested on
various instances. Finally, concluding remarks and perspectives
are given in Section 5.

2. Problem description and notations

The single-item lot sizing problem consists in satisfying the de-
mands over T consecutive periods. At each period t, the demand dt

must be satisfied by production at period t (Xt) and/or from the
inventory available at the end of the period t � 1 (It�1).

The production at each period is constrained by a constant
capacity U. If a production is done at period t, it must be greater
than or equal to a non-zero minimum order quantity L. We also
consider production and inventory costs. The production cost is a
concave function of the quantity produced (pt(Xt)) and the inven-
tory cost is a concave function of the inventory level (ht(It)). Notice
that concave cost functions may include set-up costs. The nota-
tions are summarized in Table 1.

The CLSP-MOQ can be easily modeled by a mathematical pro-
gram. The decision variables are Xt, It and a decision variable Yt de-
fined as follows:

Yt ¼
1 if the Xt > 0
0 otherwise:

�

The mathematical formulation of the CLSP-MOQ is then:

Min
XT

t¼1

ptðXtÞ þ
XT

t¼1

htðItÞ ð1Þ

Xt þ It�1 � It ¼ dt 8t 2 T ð2Þ
LYt 6 Xt 6 UYt 8t 2 T ð3Þ
Xt ; It 2 R 8t 2 T ð4Þ
Yt 2 f0;1g 8t 2 T ð5Þ

The objective function (1) minimizes the total production and
storage cost. Constraint (2) is the flow constraint. Constraint (3) in-
sures that the maximum capacity and the minimum order quantity
are satisfied. Constraints (4) and (5) define the validity domain of
the variables.

Without loss of generality, we assume that I0 = 0. Unfortunately,
IT can be strictly positive in an optimal solution. These two cases
(IT = 0 and IT > 0) are considered in the following section.

3. An optimal algorithm

In this section, we introduce some definitions and we prove
some properties. Based on these properties, we will be able to de-
rive a polynomial time algorithm to solve the CSLP-MOQ problem.

Definition 1 (Regeneration points). A period t is called a regener-
ation point if It = 0.

Definition 2 (Fractional production periods). A period t is called a
fractional production period if L < Xt < U.

Definition 3 (Sequence of production quantities). The sequence of
production quantities from u + 1 to v is noted Suv.

Definition 4 (UL-capacity-constrained sequences). Suv is a UL-
capacity-constrained sequence if the following conditions are
verified:

� u and v are regeneration points, i.e., Iu = Iv = 0;
� The demand dt for t = {u + 1, . . . , v} is satisfied;
� For all t 2 {u + 1, . . . , v � 1}, It – 0, i.e., t is not a regeneration

point;
� The production Xt for t 2 {u + 1, . . . , v} is equal to 0, U or L,

except for at most one period which can be a fractional produc-
tion period.

At this time, we consider that IT = 0. The case for which IT > 0
will be considered at the end of this section.

Property 1. A solution to the CLSP-MOQ problem can be seen as
succession of sub-sequences such that both the starting period and the
ending period are regeneration points.

Proof. Assuming that Ik = 0 for some k 2 {1 � � � n � 1}. An optimal
solution can be found by independently finding solutions to the
problems for the first k periods and for the last T � k periods. Con-
sequently, a production plan can be seen as a sequence of consec-
utive periods in such a way that the stock is empty at the beginning
and at the end of each sequence. h

The problem now is to know if the production plan of each sub-
sequence is easy to compute. Fortunately, these sub-sequences
have good properties that allow us to find the optimal production
plan polynomially.

Property 2. Let us consider an interval of periods [u, v] such that
Iu = Iv = 0. UL-capacity-constrained sequences are dominant (i.e., at
least one optimal solution is a UL-capacity-constrained sequence).

Proof. To prove this result, we show that if a solution Suv is not a
UL-capacity-constrained sequence, it cannot be an extreme point
of the polyhedron, and consequently is dominated by an other
solution. In order to prove this result, we show that the solution
Suv is a convex combination of two other feasible solutions. Let
us consider a solution Suv such that Iu = Iv = 0, It – 0 for
t 2 {u + 1, . . . , v � 1} and in such a way that there exists at least
two fractional production periods (i.e., i and j are such that
u + 1 6 i < j 6 v and L < Xi,Xj < U). Consequently, we can relocate a
small value of production between Xi and Xj as follows. Let us
define x as the biggest production quantity we can relocate keep-
ing the solution feasible, and without changing other production
levels. Then:

Table 1
Notations.

T Number of periods
dt Demand at period t
Xt Production at period t
It Inventory level at the end of period t
U Production capacity
L Minimum order quantity
pt(Xt) Concave production cost function
ht(It) Concave storage cost function
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