
Discrete Optimization

Local search methods for the flowshop scheduling problem
with flowtime minimization

Quan-Ke Pan a,b, Rubén Ruiz c,⇑
a State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, PR China
b College of Computer Science, Liaocheng University, Liaocheng 252059, PR China
c Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática, Universitat Politècnica de València, Ciudad Politécnica de la Innovación,
Edificio 8G, Acc. B. Camino de Vera S/N, 46021 Valencia, Spain

a r t i c l e i n f o

Article history:
Received 23 October 2011
Accepted 25 April 2012
Available online 3 May 2012

Keywords:
Scheduling
Flowshop
Flowtime
Local search
Metaheuristics

a b s t r a c t

Flowshop scheduling is a very active research area. This problem still attracts a considerable amount of
interest despite the sheer amount of available results. Total flowtime minimization of a flowshop has
been actively studied and many effective algorithms have been proposed in the last few years. New best
solutions have been found for common benchmarks at a rapid pace. However, these improvements many
times come at the cost of sophisticated algorithms. Complex methods hinder potential applications and
are difficult to extend to small problem variations. Replicability of results is also a challenge. In this paper,
we examine simple and easy to implement methods that at the same time result in state-of-the-art per-
formance. The first two proposed methods are based on the well known Iterated Local Search (ILS) and
Iterated Greedy (IG) frameworks, which have been applied with great success to other flowshop prob-
lems. Additionally, we present extensions of these methods that work over populations, something that
we refer to as population-based ILS (pILS) and population-based IG (pIGA), respectively. We calibrate the
presented algorithms by means of the Design of Experiments (DOE) approach. Extensive comparative
evaluations are carried out against the most recent techniques for the considered problem in the litera-
ture. The results of a comprehensive computational and statistical analysis show that the presented algo-
rithms are very effective. Furthermore, we show that, despite their simplicity, the presented methods are
able to improve 12 out of 120 best known solutions of Taillard’s flowshop benchmark with total flowtime
criterion.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Finite capacity scheduling entails the determination of the
processing order of a series of jobs that have to be processed on
the available machines in a production shop. A first classification
of scheduling problems can be derived according to the way ma-
chines are distributed in the factory. When several machines are
arranged in series and jobs must visit all these machines in the
same order we have what is called a flowshop. These problems
have been subjected to detailed studies since the pioneering work
of Johnson (1954). More specifically, a flowshop problem com-
prises a set N of n jobs that must be processed on a set M of m ma-
chines. These m machines are arranged in series and each job j 2 N
is broken down into m tasks, one per machine. A job models a given
production lot of a product or client order that must be manufac-
tured. All jobs visit machines in the same order and pij denotes
the known, non-negative and deterministic amount of time that
job j needs at machine i. At any given time, a job is either waiting

for processing or being processed by exactly one machine. Simi-
larly, machines are either idle or occupied by a job. Baker (1974,
Chapter 6, pp. 136–137) further details all restrictions that apply:
All jobs are independent and available for processing at time 0. Ma-
chines never break down and are always ready. Once started at a
machine, jobs are processed until completion with no preemption
allowed, etc. A schedule is obtained after devising a permutation of
the jobs for every machine, resulting in (n!)m possible solutions.
The setting is usually simplified and only permutation schedules
are examined, resulting in the permutation flowshop scheduling
problem (PFSP) where job passing is not allowed, i.e., all jobs visit
the machines in the same order. This reduces the number of solu-
tions to n! The objective in the PFSP is to find a permutation such
that a given criterion is optimized. Most studied criteria are based
on the completion times of the jobs at machines. More specifically,
let p = {p(1), p(2), . . . , p(n)} be a possible permutation or solution
to the problem. The completion time of job j at position p(j) at ma-
chine i is denoted by Ci,p(j) and it is computed as follows:

Ci;pðjÞ ¼maxfCi�1;pðjÞ;Ci;pðj�1Þg þ pi;pðjÞ ð1Þ

where j = 1, . . . , n, i = 1, . . . , m, Ci, p(0) = 0, and C0,p(j) = 0.

0377-2217/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2012.04.034

⇑ Corresponding author.
E-mail address: rruiz@eio.upv.es (R. Ruiz).

European Journal of Operational Research 222 (2012) 31–43

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://dx.doi.org/10.1016/j.ejor.2012.04.034
mailto:rruiz@eio.upv.es
http://dx.doi.org/10.1016/j.ejor.2012.04.034
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


The completion time of a job j in the shop is then Cm,j or Cj for
short. With completion times, many different objectives are de-
fined. The most studied criterion is the minimization of the make-
span or Cmax, where Cmax = maxj=1,. . .,nCj. This paper studies the total
flowtime minimization, which has also been studied intensively.
Total flowtime is defined as:

TFT ¼
Xn

j¼1

Cj ð2Þ

When there are no release dates, total flowtime and total com-
pletion time are equivalent objectives. Total flowtime minimiza-
tion reduces the work in progress or WIP and results in a stable
utilization of resources. Jobs ‘‘stay’’ in the shop a reduced amount
of time (Framinan et al., 2005). This is of particular importance
to industries where reducing inventory or holding costs is of para-
mount importance.

The PFSP with total flowtime criterion is denoted as n=m=P=P
Cj or as F=prmu=

P
Cj according to the well known existing

scheduling notations (Pinedo, 2009, and many others). F=prmu=P
Cj has been proved to be NP-hard in the strong case for m P 2

after the results of Gonzalez and Sahni (1978). Although some
exact methods have been reported in the literature (Ignall and
Schrage, 1965; Bansal, 1977; Stafford, 1988 and others), they are
limited to small problem instances as solving times quickly be-
come impractical for realistically-sized cases. As a result, research
has focused on the development of heuristics that produce reason-
able solutions with low time and memory requirements. Some
heuristics have been presented by Rajendran (1993), Rajendran
and Ziegler (1997) and Li and Wu (2005), to name just a few. With
the advent of powerful desktop computers, and now for more than
two decades, special emphasis has been given to the study of meta-
heuristics, capable of producing near optimal solutions, albeit nor-
mally at the cost of longer calculations. Some examples are the
genetic algorithm of Tang and Liu (2002), ant colony optimization
(ACO) of Rajendran and Ziegler (2004) and the differential evolu-
tion of Pan et al. (2008), among many others.

Metaheuristics provide excellent results and constitute the
state-of-the-art methods available for the PFSP with total flowtime
criterion. However, many metaheuristics are fairly sophisticated
and depend on several parameters and settings that might be prob-
lem and even instance dependent. Most of the time, the presented
methods are so specifically tailored for the problem at hand that
slight variations of the scheduling setting require extensive
changes in the algorithms or even render them inapplicable. In
some cases, published algorithms are so intricate that an indepen-
dent coding is unlikely to obtain the same reported effectiveness or
efficiency without contacting the authors to obtain detailed infor-
mation and/or source codes. All this severely hinders potential
practical applications. Therefore, simple, general and easily adapt-
able algorithms are highly desirable. However, such simplistic
methods might produce lower quality solutions and a difficult
compromise arises between simplicity and performance.

The Iterated Local Search (ILS) and Iterated Greedy (IG) frame-
works, described by Lourenço et al. (2010) and Ruiz and Stützle
(2007), respectively, constitute two simple templates for combina-
torial optimization. They have resulted in state-of-the-art results
for several problems, including the permutation flowshop. Follow-
ing the successful application of the above two local search based
frameworks, this paper presents four algorithms: an IGA, an ILS,
and two population-based extensions, dubbed as population-based
IGA (pIGA), and population-based ILS (pILS), respectively. The main
focus is on simplicity, extensibility and ease of coding and replica-
tion of results. The presented methods employ some powerful, yet
simple operators in order to improve performance. The results of

the presented algorithms are compared to those of recently pub-
lished metaheuristics. The computational results and statistical
analyses show, as we will detail, that the presented algorithms
are new state-of-the-art methods for the problem under
consideration.

The rest of the paper is organized as follows. Section 2 reviews
the literature of the PFSP with total flowtime minimization crite-
rion. Section 3 presents the four local search based algorithms in
detail. The proposed algorithms are calibrated in section 4. A com-
prehensive comparison of the presented algorithms is shown,
along with statistical analyses, in Section 5. Finally, we conclude
the paper in Section 6.

2. Literature review

The PFSP with total flowtime criterion was first studied by Ign-
all and Schrage (1965) and by Gupta (1972). This is more than a
decade later than the pioneering work of Johnson (1954) for make-
span minimization in the PFSP. Due to the difficulty faced by exact
methods to solve medium size or large instances, efforts have been
mainly dedicated to finding high quality solutions in a reasonable
computational time by using heuristic or metaheuristic optimiza-
tion techniques. Framinan et al. (2005) provide a comprehensive
review and evaluation of heuristics for the PFSP with total flow-
time criterion. Here we mention just the most cited heuristics.
Rajendran (1993), Rajendran and Ziegler (1997), Liu and Reeves
(2001), Li and Wu (2005) and, more recently, Laha and Sarin
(2009) present high performing simple heuristics. Other more
elaborated methods are those of Allahverdi and Aldowaisan
(2002), Framinan et al. (2005), and Li et al. (2009). In any case, in
order to attain a better solution quality for the problem under con-
sideration, modern metaheuristics have been increasingly applied
in recent years. One of the earliest known applications of genetic
algorithms (GA) is due to Vempati et al. (1993). In this case, a sim-
ple GA was presented but only applied to small instances of size
25 � 10 (25 jobs and 10 machines) maximum. Later, Yamada and
Reeves (1998) presented a genetic local search algorithm (GALS)
providing good quality solutions for five sets of Taillard (1993) in-
stances (20 � 5, 20 � 10, 20 � 20, 50 � 5 and 50 � 10) but needing
large computational times. Gupta et al. (2000) designed a tabu
search (TS) based approach that was compared against the heuris-
tics of Rajendran (1993) obtaining better results for the tested in-
stances. Rajendran and Ziegler (2004) proposed two ant colony
optimization (ACO) algorithms, called M-MMAS and PACO, respec-
tively, for makespan and total flowtime minimization. PACO
showed better performance than M-MMAS and the best heuristic
proposed by Liu and Reeves (2001). Later, Rajendran and Ziegler
(2005) have introduced a new ACO algorithm based on similar con-
cepts to those of M-MMAS and PACO with slightly better perfor-
mance in some scenarios. Tasgetiren et al. (2007) extended a
continuous particle swarm optimization (PSO) method to the PFSP
with both makespan and total flowtime criteria. With this method,
57 out of 90 best known solutions reported by Liu and Reeves
(2001) and Rajendran and Ziegler (2004) for Taillard (1993) bench-
marks were improved. However, the PSO was soon surpassed by
the combinatorial PSO (CPSO) of Jarboui et al. (2008) and also by
the discrete differential evolution (DDERLS) and iterated greedy
algorithms (IGRLS) of Pan et al. (2008).

Quite recently, it seems that there has been an intensified inter-
est in this problem as quite a number of new metaheuristics have
been published. Tseng and Lin (2009) proposed a hybrid genetic lo-
cal search algorithm (denoted as HGAT1) by employing GA to do
the global search and two methods, Insertion Search and Insertion
Search with Cut-and-Repair, to do the local search. The authors
demonstrated improved performance of their proposed HGAT1 over
the PSO of Tasgetiren et al. (2007), GALS of Yamada and Reeves

32 Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43



Download	English	Version:

https://daneshyari.com/en/article/478372

Download	Persian	Version:

https://daneshyari.com/article/478372

Daneshyari.com

https://daneshyari.com/en/article/478372
https://daneshyari.com/article/478372
https://daneshyari.com/

