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a b s t r a c t

Managing shelf space is critical for retailers to attract customers and optimize profits. This article devel-
ops a shelf-space allocation optimization model that explicitly incorporates essential in-store costs and
considers space- and cross-elasticities. A piecewise linearization technique is used to approximate the
complicated nonlinear space-allocation model. The approximation reformulates the non-convex optimi-
zation problem into a linear mixed integer programming (MIP) problem. The MIP solution not only gen-
erates near-optimal solutions for large scale optimization problems, but also provides an error bound to
evaluate the solution quality. Consequently, the proposed approach can solve single category-shelf space
management problems with as many products as are typically encountered in practice and with more
complicated cost and profit structures than currently possible by existing methods. Numerical experi-
ments show the competitive accuracy of the proposed method compared with the mixed integer nonlin-
ear programming shelf-space model. Several extensions of the main model are discussed to illustrate the
flexibility of the proposed methodology.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The choice of which products to stock among numerous com-
peting products and how much shelf space to allocate to those
products are central decisions for retailers. Because shelf space is
a scarce and fixed resource and potentially available products are
continually increasing, retailers have a high incentive to make
these decisions using optimization tools. Brand-loyal customers
look for a specific item and buy it if it is available or delay if is
not. Thus, space allocated to a product has no effect on its sales
(Anderson, 1979). However, marketing research shows that most
customer decisions are made at the point of purchase (POPAI,
1997). Ehrenberg (1972) discovered that, ‘‘except in relatively
short time periods . . . buyers of any particular brand therefore
buy other brands more often than the brand itself.’’ This indicates
that in-store factors, including shelf space allocated to a product,
may influence customer product choice. Retailers with a well-
designed shelf space management system can, therefore, attract
customers, prevent stock outs, and increase store financial perfor-
mance while reducing operating costs (Yang and Chen, 1999). In
addition, close-to-optimal shelf space allocations provide the basis
for distributing promotional resources among different product
categories (Chen et al., 1999). However, because products typically
have different profit margins and vary widely in space- and cross-
elasticities, the optimization problem is very complicated to solve.

This article presents realistic shelf-space management optimi-
zation models, provides a solution procedure that can handle prac-
tical problem sizes, and is flexible enough to be applied to a wide
range of shelf-space management models. The current work builds
on the well-known model of Corstjens and Doyle (1981) and ex-
tends it in three directions. First, the proposed model allocates
shelf-space to a product as an integer number of its facing, which
is what store customers see from the product. Second, the model
allows for simultaneous shelf space and assortment decisions.
Third, cost elements, such as assortment and replenishment costs,
are modeled for individual products. The proposed solution meth-
odology reformulates the nonconvex mixed integer nonlinear pro-
gramming (MINLP) model using piecewise linear functions. Thus,
the reformulated model can be solved easily by the commonly
used linear mixed integer programming (MIP) technique. The
reformulated model generates both a feasible solution and a bound
on the (globally) optimal objective value of the exact nonlinear
model. This allows for the calculation of an a posteriori error
bound1 on the optimal MIP solution. This article also extends the
model to incorporate the following additional effects mentioned in
the literature: marketing variables other than space (Yang and Chen,
1999), fixed procurement costs and the possibility of storing items in
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a warehouse (Urban, 1998), and substitution effects due to tempo-
rary or permanent unavailability of products (Borin et al., 1994).

The remainder of this article is organized as follows: Section 2
reviews the relevant literature and develops the main shelf space
management model. Section 3 develops the piecewise linearization
model that reformulates the complex MINLP model. Section 4 pre-
sents real-life data test results, sensitivity analyses, and computa-
tional experiments for a large scale problem. Section 5 discusses
various extensions of the main model and their linearizations.

This article demonstrates that the proposed linearization tech-
nique can be applied to a wide range of shelf-space management
models in which the demand function is of signomial form. To
clarify the presentation, standardized notations are used in this
paper as follows: decision variables and variables that depend on
decision variables are written in lower-case Roman characters;
constants and given quantities are indicated by upper-case Roman
characters; parameters and quantities that need to be estimated or
user-provided are expressed in lower-case Greek characters; and
functions, without arguments, are specified by upper-case Greek
characters.

2. Literature review

The discussion below focuses on literature that addresses
models and procedures related to shelf-space allocation problems
considered in this article.

2.1. Commercial models

In the retail industry, commercial software incorporating vari-
ous cost models is popular due to its general simplicity and easily
implementable decisions (Zufryden, 1986). Examples include
Apollo (IRI) and Spaceman (Nielsen), which are PC based pro-
grams. These software systems provide retailers a realistic view
of the shelves and are capable of allocating shelf space according
to simple heuristics, such as turnover, gross profit or margin,
and constraints from handling and inventory costs (Desmet and
Renaudin, 1998). The main drawbacks of all these systems is their
failure to include demand effects, that is, the systems ignore the
effects of shelf space allocation on product sales. Thus, as ad-
dressed in Desmet and Renaudin (1998), none of these systems
can be considered as serious tools for optimizing shelf space allo-
cations. Consequently, it is not surprising that most retailers ‘‘use
them mainly for planogram accounting purposes to reduce the
amount of time spent on manually manipulating the shelves’’
(Drèze et al., 1994).

2.2. Optimization models

Hansen and Heinsbroek (1979) developed one of the first shelf-
space allocation optimization models using a multiplicative de-
mand function that incorporates individual space-elasticities, but
disregards cross-elasticities from similar products. Constraints of
total available shelf space, minimum allocations, and integer solu-
tions are considered. Binary variables for handling assortment
decisions are also included. The authors applied a generalized
Lagrange multiplier to solve the optimization problem; however,
it is only guaranteed to find local solutions for non-convex
programs.

The model of Corstjens and Doyle (1981) incorporates both
space- and cross-elasticities and accounts for constraints similar
to those considered by Hansen and Heinsbroek (1979). However,
the Corstjens and Doyle model incorporates a more detailed cost

structure including procurement costs, carrying costs, and out-
of-stock costs, which are jointly modeled as a multiplicative form
to allocated shelf space. A signomial geometric programming
approach is used to optimize the shelf space allocation; however,
Borin et al. (1994) indicated that the reported solutions for seven
of ten problems violated the model constraints.

The SHARP model developed by Bultez and Naert (1988) and
Bultez et al. (1989) is similar to the one developed by Corstjens
and Doyle (1981). However, they did not develop an explicit func-
tion relating shelf space allocation to product sales. Instead, space
elasticities are estimated using a symmetric attraction model for
SHARP-1 and an asymmetric model for SHARP-2. A heuristic proce-
dure is proposed to optimize these models.

Borin et al. (1994) extended the demand function of Corstjens
and Doyle (1981) to allow simultaneous decisions about assort-
ment selections and shelf space allocations. They explicitly consid-
ered substitution effects due to temporary or permanent
unavailability of products. The resulting model optimizes return
on inventory and is solved using simulated annealing heuristic
procedures. Borin and Farris (1995) analyzed the degree of errors
that may be introduced in estimating parameters required for
Borin et al. (1994).

Yang and Chen (1999) simplified the Corstjens and Doyle model
(1981), disregarding cross-elasticities and assuming that a prod-
uct’s profit is linear within a small number of facings. They allowed
the profit of each product to vary when allocated to different
shelves by formulating the shelf-space allocation problem, similar
to a knapsack problem. Allowing profit to depend on shelf place-
ment is consistent with the experimental study of Drèze et al.
(1994), who concluded that product location on shelves is more
important for determining product sales than the amount of space
allocated to the product. Yang (2001) proposed a heuristic to opti-
mize this model. His technique extends an approach applied to
solve simple knapsack problems. Lim et al. (2004) combined a local
search technique with meta-heuristics to optimize the Yang and
Chen model (1999), extending the model to account for profit func-
tions and product groupings.

Although the research directions of Borin et al. (1994) and Yang
and Chen (1999) fundamentally differ, both share the following
weaknesses. They focus on the revenue side and do not explicitly
incorporate the cost side of operations. Clearly, certain costs are
not independent of shelf space allocation. For example, the smaller
the shelf space allocated to a product, the greater the restocking
frequency and the higher the resulting restocking costs for the
product. Urban (1998) generalized the inventory-dependent de-
mand model to explicitly model the demand rate as a nonlinear
function of the inventory level. He used a greedy heuristic and a ge-
netic algorithm to solve the product assortment and shelf-space
allocation. Hwang et al. (2005) formulated a nonlinear program-
ming model for a replenishment problem when item demand rate
is a function of quantity and display location on the shelves. A gra-
dient search heuristic and a genetic algorithm were also proposed
to solve the problem. Note that heuristics are used to solve many of
these optimization problems. Although the nonlinear program-
ming model might provide good feasible solutions for the test
cases considered, it cannot guarantee an optimal or close-to opti-
mal solution. All heuristics-based solutions do not provide a meth-
od to determine how good the computed solution actually is to the
globally optimized solution.

Several other articles have been published in a few related
areas. For example, Kok and Fisher (2004) developed an assort-
ment-planning model where consumers may accept substitutes
when their favorite product is unavailable. They presented a meth-
odology for estimating model parameters using sales data from
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