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a b s t r a c t

This paper looks at a Multi-Period Renewal equipment problem (MPR). It is inspired by a specific real-life
situation where a set of hardware items is to be managed and their replacement dates determined, given
a budget over a time horizon comprising a set of periods. The particular characteristic of this problem is
the possibility of carrying forward any unused budget from one period to the next, which corresponds to
the multi-periodicity aspect in the model. We begin with the industrial context and deduce the corre-
sponding knapsack model that is the subject of this paper. Links to certain variants of the knapsack prob-
lem are next examined. We provide a study of complexity of the problem, for some of its special cases,
and for its continuous relaxation. In particular, it is established that its continuous relaxation and a spe-
cial case can be solved in (strongly) polynomial time, that three other special cases can be solved in
pseudo-polynomial time, while the problem itself is strongly NP-hard when the number of periods is
unbounded. Next, two heuristics are proposed for solving the MPR problem. Experimental results and
comparisons with the Martello&Toth and Dantzig heuristics, adapted to our problem, are provided.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The knapsack problem (KP) has a significant place in the study of
integer programming models with binary variables. In the stan-
dard knapsack problem the quantity

P
i2Npixi is to be maximized

subject to the constraint
P

i2Nwixi 6 b, where xi 2 {0,1},
N = {1,2, . . . ,n}, pi is the value or profit of item i, wi is the weight
of item i and b is the knapsack capacity, all assumed to be non-
negative. In addition to the standard problem, a number of
different variants of the problem have been put forward and inves-
tigated by researchers over the last decades. This paper looks at
one of these variants that we have called the Multi-Period Renewal
equipment problem (MPR). It is inspired by a specific real-life
situation where a set of hardware items is to be managed and their
replacement dates determined, given a budget over a time horizon
comprising a set of periods. The particular characteristic of this
variant of the problem is the possibility of carrying forward any
unused budget from one period to the next, corresponding to the
multi-periodicity aspect in the statement of the problem. The
contribution of this paper is a new knapsack model originating
from a real industrial context, together with a complete theoretical
examination of the problem and its relations to other knapsack
problems, and a set of efficient heuristics for solving it.

The paper is organized as follows. In Section 2 we present the
specific industrial context that gave rise to our problem and the

corresponding mathematical model. Section 3 looks at links to
other knapsack problems. In Section 4 we investigate the computa-
tional complexity of the MPR problem as well as some of its special
cases and its continuous relaxation. We show in particular that the
MPR problem is strongly NP-hard when the number of periods is
unbounded and weakly NP-hard for the bounded case. Finally, in
Section 5, we propose two new heuristics for the MPR problem
and recall how two other well-known heuristics, that is to say
the Dantzig and Martello&Toth heuristics, are also suitable for
solving MPR. We provide a comparative experimental study of all
these heuristics.

2. From an industrial problem to a theoretical model

In some countries it is usual for a city, town or municipality to
contract certain public utilities (water supply, electricity, etc.) out
to private companies, usually under concessions, leases or man-
agement contracts. Under these arrangements, the public entity
delegates the provision of the service for a time horizon M typi-
cally ranging from 15 to 25 years, while the private entity remains
under a contractual obligation to spend a given amount of money
(B) on the maintenance and renewal of equipment. The company’s
maintenance strategy is based on continuous renewal so as to
ensure continuity of service and to avoid problems with anti-
quated plant. For the application in hand (water supply network),
equipments have lifetimes that range from 50 to 100 years which
is largely greater than the considered time horizon. This implies
that at most one replacement occurs over time horizon M. How-
ever, in practice more than one replacement could happen for
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one equipment during the time horizon due to unpredictable fail-
ures. These situations are handled by the daily maintenance pro-
cess, while this paper deals only with the strategic maintenance
process. In line with an internal budgeting policy the company al-
lots an annual budget bj to such expenditure, that is

P
j2Mbj ¼ B.

Given that the entire budget has to be used up, the company car-
ries any unused budget at year j over to the following years. For
each piece of equipment the replacement cost is assumed to be
constant over the time horizon M, because in practice there is no
reliable information of the variation of these costs over time. On
the other hand, the profit attributable to the replacement, is calcu-
lated according to a formula based on such elements as the prob-
ability of failure, the expected lifetime of the equipment, its
importance in the industrial process, etc. Hence, the profit change
along with time and this change corresponds to a certain deterio-
ration process [1]. Thus the related cost, profit and budget coeffi-
cients are assumed to be known with certainty, in contrast to
conventional renewal theory which relies on probability theory,
(see for instance Cox [2]). From this point of view the problem is
a simplified deterministic version of conventional renewal prob-
lems. However, there is one particular property that increases
the difficulty of problems, that is to say the property of multi-peri-
odicity. More specifically, any decision made in some period j
impacts those made in subsequent periods.

Before formulating the mathematical model of the MPR prob-
lem, let us give the notation used throughout the paper. Let N be
a set of n pieces of equipment, and M a horizon of m periods.

� xi,j is the assignment decision variable, that is to say xi,j = 1 if
equipment i is replaced in period j, and 0 otherwise;
� pi,j is the profit obtained when replacing equipment i at period j;
� wi is the replacement cost of equipment i (it remains unchanged

over periods);
� bj gives the budget alloted to period j.

All these data are assumed to be non-negative integers. Our
problem can be mathematically formulated as follows:

max
X
i2N

X
j2M

pi;jxi;j

X
i2N

wixi;1 6 b1;

X
i2N

wixi;2 6 b2 þ b1 �
X
i2N

wixi;1;

. . .

X
i2N

wixi;j 6 bj þ
Xj�1

t¼1

bt �
Xj�1

t¼1

X
i2N

wixi;t; 8j 2 M;

X
j2M

xi;j 6 1; 8i 2 N;

xi;j 2 f0;1g; 8i 2 N; j 2 M:

In the above formulation, the term b1 �
P

i2Nwixi;1 gives the un-
used budget at the end of the first year. This is added to the allot-
ted budget for the second year, and so on. Let Bj denote the
cumulative budget from period 1 to period j, that is Bj ¼

Pj
t¼1bt .

Since all bj are assumed to be non-negative, we have the following
relation: B1 6 B2 6 � � � 6 Bm. The problem can then be rewritten as
follows:

ðPÞ max
X
j2M

X
i2N

pi;jxi;j ð1Þ

Xj

t¼1

X
i2N

wixi;t 6 Bj; 8j 2 M; ð2Þ

X
j2M

xi;j 6 1; 8i 2 N; ð3Þ

xi;j 2 f0;1g; 8i 2 N; j 2 M: ð4Þ

Note that when Bj = Bj+1 for two consecutive periods j and j + 1, it
can easily be shown that only the capacity constraint related to per-
iod j + 1 needs to be retained, and for each item the choice having
the lower profit over these two periods may simply be discarded.
Hence, we assume that B1 < B2 < � � � < Bm.

From now on, in line with the notation commonly used for
knapsack models, we shall use the term item for equipment, weight
instead of replacement cost, and capacity for budget. Hence, item i
assigned to period j reads equipment i replaced during period j. In
the above model the sum of the weights of all items chosen from
period 1 to period j cannot exceed capacity Bj for all j 2M (2). Each
item i can be assigned to at most one period j (3). The multi-period
aspect lies in the fact that each constraint involves the current per-
iod and all preceding ones. The total profit is to be maximized (1).
As far as we know, we were the first to model the problem in [3]. In
the following we establish and exhibit links with some other prob-
lems studied in the literature.

3. Literature review and links with other knapsack problems

Let us first look at the Multi-Period Knapsack problem (MPK) intro-
duced by Faaland [4]. Faaland considers a set N of items and a set M of
periods. To each period j 2M there corresponds a subset
Nj = {j 2 1, . . . ,m} of items that can be assigned to this period. Note
that

Sm
j¼1Nj ¼ N and Nk \ Nj = ; for each pair (j,k)jj – k of items. For

each item i, a profit pi and a weight wi are given. The cumulative
weight of all items chosen from period 1 to period j cannot exceed
the capacity Bj associated with period j. The total profit has to be
maximized by selecting items in their associated periods. The
decision variables in this problem are unbounded: an item i may
be chosen more than once in period j such that i 2 Nj. Faaland
proposed a polynomial algorithm to solve exactly the continuous
relaxation of MPK, and in so doing to compute an upper bound of
MPK. He also proposed a branch and bound algorithm using this
upper bound.

The binary version of this problem, in which an item is chosen
at most once in its associated period, is called BMPK. Given the
above notation, BMPK can be formulated as follows:

max
X
j2M

X
i2Nj

pixi; ð5Þ

Xj

t¼1

X
i2Nt

wixi 6 Bj; 8j 2 M; ð6Þ

xi 2 f0;1g; 8i 2 N: ð7Þ

Thus the weight of any chosen item will impact subsequent
periods, given that in each period the cumulative weight is consid-
ered. The overall profit is maximized by choosing items in each per-
iod (5), without violating the cumulative capacity constraints (6). It
now becomes apparent that BMPK and MPR have some similarities.
What is different is that items in BMPK can be only assigned to a sin-
gle (i.e. its associated) period. As we shall show, BMPK may be
viewed as special case of MPR (see Section 4.3), in which an item
may be chosen on at most one occasion. BMPK is shown to be weakly
NP-hard in Section 4.3, and its complexity does not depend on the
number of periods.

The Generalized Assignment Problem (GAP) is another problem
related to knapsack problems. GAP is known to be strongly
NP-hard and has been widely studied, (see for instance Martello
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