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a b s t r a c t

We investigate cost-sharing mechanisms for scheduling cost-sharing games. We assume that the demand
is general—that is, each player can be allocated one of several levels of service. We show how to design
mechanisms for these games that are weakly group strategyproof, approximately budget-balanced, and
approximately efficient, using approximation algorithms for the underlying scheduling problems. We
consider scheduling cost-sharing games in single machine, parallel machine, and concurrent open shop
environments.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In a general demand cost-sharing game, there is a set of custom-
ers who is interested in receiving service from a service provider.
The customers’ demand for service is general—that is, each cus-
tomer can receive various levels of service. Each customer has its
own private valuation for the various levels of service. In order to
determine which customers to serve, the service provider solicits
bids from each customer. Based on these bids and the cost of pro-
viding service, the service provider determines the level of service
it provides each customer, and how the cost of providing this ser-
vice is shared by the customers—in other words, how much each
customer has to pay. The algorithm that the service provider uses
to determine these quantities is called a cost-sharing mechanism.

To illustrate, consider the following example, based on a sched-
uling problem. In this setting, there is a set of customers, each of
which has a number of identical jobs it would like to be processed
on a single machine. This machine is maintained by a service pro-
vider. Here, the level of service that a customer receives corre-
sponds to the number of its jobs processed on the machine. The
service provider solicits bids from the customers, and based on
these bids and the processing costs, determines how many of each
customer’s jobs to process, and the price to charge each customer
for processing its jobs.

There has been considerable work on cost-sharing mechanisms,
focusing on designing mechanisms with various desirable proper-
ties, such as: (i) truthfulness, the idea that it is optimal for each cus-

tomer to bid its private valuation, (ii) budget-balance, the notion
that the service provider recovers the cost of providing the service,
and (iii) efficiency, the idea that the total social welfare of the cus-
tomers is maximized. Most of the work so far has been on binary
demand cost-sharing games—that is, when customers either re-
ceive one level of service or none at all. For this case, Moulin
(1999) and Moulin and Shenker (2001) proposed a class of cost-
sharing mechanisms, known as Moulin mechanisms, and showed
that these mechanisms achieve a notion of truthfulness known as
group strategyproofness. Several researchers have studied the de-
sign of approximately budget-balanced Moulin mechanisms for a
variety of cost-sharing games, such as those arising from network
design (e.g., Jain and Vazirani, 2001; Archer et al., 2004; Gupta
et al., 2007a,b; Roughgarden and Sundararajan, 2007), facility loca-
tion (e.g., Pál and Tardos, 2003; Leonardi and Schäfer, 2004; Köne-
mann et al., 2005; Immorlica et al., 2008), and logistics (e.g., Xu and
Yang, 2009). Motivated by impossibility results on the existence of
simultaneously truthful, budget-balanced, and efficient mecha-
nisms (Green et al., 1976; Roberts, 1979), Roughgarden and Sun-
dararajan (2009) developed an alternate framework to quantify
efficiency in cost-sharing mechanisms. Mehta et al. (2009) pro-
posed a generalization of Moulin mechanisms, called acyclic mech-
anisms, and showed that they achieve a weaker notion of
truthfulness known as weak group strategyproofness for cost-shar-
ing games with binary demand, as well as for those with general
demand. Brenner and Schäfer (2008b) developed a framework for
obtaining approximately budget-balanced and approximately effi-
cient acyclic mechanisms for binary demand cost-sharing games.
Brenner and Schäfer (2010) studied cost-sharing mechanisms in
an online setting, in which players arrive over time and reveal their
characteristics only at the time of arrival.
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One type of cost-sharing game that has received a fair amount
of attention is the kind that arises from scheduling problems. Like
in the illustrative example described above, in a general demand
scheduling cost-sharing game, each customer has a number of jobs
that it would like to be processed by a set of machines, maintained
by a service provider. Each customer requires that its jobs must be
processed in a certain order, and the service level that a customer
receives corresponds to the number of its jobs that are processed.
The service provider’s cost of processing these jobs is given by the
optimal value of an associated scheduling problem (e.g., the mini-
mum sum of weighted completion times). Brenner and Schäfer
(2008a) and Bleischwitz and Monien (2009) studied the design of
approximately budget-balanced and approximately efficient
Moulin mechanisms for binary-demand cost-sharing games arising
from various scheduling problems. In addition, Brenner and
Schäfer (2008b) applied their framework for approximately bud-
get-balanced and approximately efficient acyclic mechanisms to
binary-demand scheduling cost sharing games. Finally, Brenner
and Schäfer (2010) investigated cost-sharing mechanisms for
scheduling in online settings.

In this work, we study how to design cost-sharing mechanisms
for general demand cost-sharing games. We extend the framework
of Brenner and Schäfer (2008b) and show how to use an approxima-
tion algorithm for the service provider’s underlying optimization
problem to obtain an acyclic mechanism that is approximately bud-
get-balanced and approximately efficient (Theorems 3.1 and 3.2).
Then, we give acyclic mechanisms for general demand cost-sharing
games that arise from a variety of scheduling problems with concave
regular sum objectives. This class of objective functions includes the
classic total weighted completion time objective. We consider
scheduling cost-sharing games in single machine (Theorem 4.3),
identical parallel machine (Theorem 4.7), and concurrent open shop
environments (Theorem 4.11). We accomplish this by using the
framework with a list scheduling algorithm—an algorithm that sched-
ules according to a permutation of the jobs—for each of the underly-
ing scheduling problems. The budget-balance and efficiency
guarantees dictated by the framework hold for these mechanisms,
as long as the list scheduling algorithm used is compatible with the
customers’ service levels: that is, as long as the customers require
their jobs be processed in the same order as the list scheduling
algorithm.

2. Preliminaries on general demand cost-sharing games

In this section, we give a brief introduction to general demand
cost-sharing games and cost-sharing mechanisms as studied and
presented by Mehta et al. (2009).

Consider a setting with a service provider and a universe U =
{1,2, . . . ,n} of players. Every player i 2 U is interested in a set of ser-
vices {1,2, . . . ,Ri} where Ri is the publicly known maximum service
level of player i. These services are ordered so that player i has to ob-
tain all the services {1,2, . . . , j � 1} before obtaining service j. Hence,
the set of services can also be thought of as levels of service. For the
sake of compactness, if player i is served service levels {1,2, . . . ,si}
for some 0 6 si 6 Ri, we say si is the service level of player i.

An allocation S ¼ ðs1; s2; . . . ; snÞ 2 ZU
P0 describes the level of ser-

vice offered, or allocated, to each player: in allocation S, si is the
service level allocated to player i 2 U. The minimal allocation is
; = (0,0, . . . ,0) and the maximal allocation is Rmax = (R1,R2, . . . ,Rn).
Alternatively, an allocation S = (s1,s2, . . . ,sn) can be viewed as a
closed set of (player, service level) pairs S ¼

Sn
i¼1fði; jÞ : j ¼ 1;2;

. . . ; sig. 1 In this work, we use both notions of an allocation inter-
changeably. We denote the set of all allocations by A.

A cost function c : A ! R describes the cost of providing service:
c(S) is the cost of providing the service levels in allocation S. By
assumption, c(;) = 0, and c(S) is nondecreasing in every component
of S. In this work, we assume that the cost c(S) for an allocation S is
the value of a minimum-cost solution to an underlying optimization
problem that models the service provider’s problem of providing S.

Each player i 2 U has a private type Vi = (vi(1),vi(2), . . . ,vi(Ri))
called a valuation. The value vi(j) is player i’s marginal valuation
of service level j; that is, the amount player i is willing to pay for
service level j after receiving service levels 1,2, . . . , j � 1. By
assumption, vi(j) is nonincreasing in j. Player i’s total valuation
for service level j is

Pj
k¼1v iðkÞ. In addition, each player i 2 U an-

nounces a bid Bi = (bi(1),bi(2), . . . ,bi(Ri)). The value bi(j) is player i’s
announced marginal bid for service level j, that is, the amount
player i announces it is willing to pay for service level j after receiv-
ing service levels 1,2, . . . , j � 1. Player i’s total bid for service level j
is
Pj

k¼1biðkÞ. By assumption, bi(j) is also nonincreasing in j.
Before we move on, a note about the assumptions made here.

Note we assume that vi(j) is nonincreasing in j for any player
i 2 U; in other words, each player derives nonincreasing marginal
value for each additional level of service it obtains. This is the com-
mon ‘‘diminishing marginal utility’’ assumption in economics. This
assumption is reasonable in many contexts. For example, consider
a general demand cost-sharing game in which the service levels
correspond to the number of connections made between a player
and a server. In this case, the first connection is arguably the most
important and valued most highly, while the subsequent connec-
tions are useful but redundant, and hence valued less. The same
reasoning can be applied to the assumption that bi(j) is nonincreas-
ing in j for each player i 2 U; that is, each player’s marginal bids are
nonincreasing in the level of service.

A cost-sharing mechanism collects a bid Bi from each player i 2 U,
and determines an allocation S ¼ ðs1; s2; . . . ; snÞ 2 A to serve and a
price qi for each player i 2 U. We restrict our attention to mecha-
nisms that satisfy the following standard assumptions: (1) individ-
ual rationality, meaning that for every player i 2 U,qi = 0 if si = 0 and
qi 6

Psi
j¼1biðjÞ if si > 0; and (2) no positive transfers, meaning that

prices are always nonnegative. We also make the standard
assumption that players maximize quasilinear utilities; in other
words, each player i 2 U aims to maximize uiðS; qiÞ ¼

Psi
j¼1v iðjÞ � qi.

Although the primary role of a cost-sharing mechanism is to se-
lect an allocation to be served, we follow recent work and provide
cost-sharing mechanisms that also produce a feasible way of serv-
ing the chosen allocation. In particular, all of the mechanisms re-
ported in this work produce a feasible solution to the underlying
optimization problem for providing allocation S. The cost of this
feasible solution is denoted by cM(S), and is permitted to exceed
the optimal cost c(S). It is necessary to allow sub-optimal solutions
in order to implement mechanisms efficiently. For example, if the
underlying optimization problem is NP-hard, then computing the
optimal cost c(S) for a given allocation S cannot be accomplished
in polynomial time, unless P = NP.

A mechanism can satisfy different notions of truthfulness. In
this work, we focus on the notion of weak group strategyproofness
(Devanur et al., 2005). A mechanism is said to be weakly group
strategyproof if no coordinated false bid by a subset of players
can ever strictly increase the utility of every one of its members.
Thus, in a weakly group strategyproof mechanism, every defecting
coalition has at least one indifferent member.

We evaluate a cost-sharing mechanism against two types of
metrics: (1) revenue and (2) economic efficiency. A mechanism is
said to be b-budget-balanced for some b P 1 if

cMðSÞ 6
Xn

i¼1

qi 6 bcðSÞ
1 A set P of pairs of positive integers is closed if (i, j) 2 P implies (i, j � 1) 2 P.
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