
Stochastics and Statistics

Valuating residential real estate using parametric programming

Subhash C. Narula a, John F. Wellington b,⇑, Stephen A. Lewis b

a Virginia Commonwealth University, Richmond, VA 23284-4000, USA
b Indiana University – Purdue University Fort Wayne (IPFW), Fort Wayne, IN 46805-1499, USA

a r t i c l e i n f o

Article history:
Received 6 January 2010
Accepted 14 August 2011
Available online 24 August 2011

Keywords:
Linear programming
Parametric programming
Real estate valuation
Regression
Regression quantiles

a b s t r a c t

When the estimation of the single equation multiple linear regression model is looked upon as an opti-
mization problem, we show how the principles and methods of optimization can assist the analyst in
finding an attractive prediction model. We illustrate this with the estimation of a linear prediction model
for valuating residential property using regression quantiles. We make use of the linear parametric pro-
gramming formulation to obtain the family of regression quantile models associated with a data set. We
use the principle of dominance to reduce the number of models for consideration in the search for the
most preferred property valuation model (s). We also provide useful displays that assist the analyst
and the decision maker in selecting the final model (s). The approach is an interface between data
analysis and operations research.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The objective of this paper is the presentation of a meaningful
method for valuating single-family residential property using a
hedonic model that incorporates features of the property such
as its age, square feet of living space, lot size, number of rooms,
and others. The underlying thesis of the hedonic model is that
the valuation of the residence can be related to a ‘bundle’ of
the property’s features (Kummerow, 2000). This principle is used
in valuating residential property for ‘‘purchase and sale, transfer,
tax assessment, expropriation, inheritance or estate settlement,
investment and financing . . . by real estate agents, appraisers,
mortgage lenders, brokers, property developers, investors and
fund managers, lenders, market researchers and analysts, shop-
ping center owners and operators, and other specialists and con-
sultants’’ using multiple linear regression methods (Pagourtzi
et al., 2003). Although modeling residential property value in this
manner is not the only technique, regression methods are com-
monly and routinely used in mass appraisal and other areas of
real estate (Ferreira and Sirmans, 1988). In fact, according to
the literature, ‘‘Appraisers must supplement their skill set with
valuation methods that can systematically analyze larger data
sets with output that is readily applicable to single-property ap-
praisal. The importance of this cannot be overstated. These sys-
tems use statistical models to derive real estate value, replacing
flesh and blood appraisers. They also use all available market

data, most often in the form of a database of comparable sales,’’
(Kane et al., 2004). They continued: ‘‘Appraisal valuation model-
ing techniques augment traditional appraisal practice. The apprai-
ser, therefore, is maintained as the valuation expert.’’ This point is
particularly important in that the method proposed in this paper
positions the valuation expert centrally in selecting the final val-
uation model.

In this paper, the single equation hedonic linear regression
model is used to valuate residential property using the method
of quantile regression (QR) due to Koenker and Bassett (1978).
QR has very appealing aspects that translate well to valuating res-
idential property. It is very descriptive and offers a focus on the
changes (regression residuals) in property valuations produced
by the models. The latter is particularly meaningful because it is
the source of satisfaction and otherwise for parties directly im-
pacted by the valuation such as property owners and taxing
authorities. We refer to this as the loss associated with changes
in property valuation. Because QR produces many regression mod-
els, it provides the analyst and decision maker with alternate mod-
els to consider in controlling loss arising with model
implementation. When residential property is valuated above a
threshold percent that reflects the owner’s perception of its fair
valuation, the owner may challenge the new valuation. However,
the owner may not do so if the new valuation is less than the cur-
rent valuation. At the same time, property valuations are intended
to produce tax revenue. Therefore, it is desirable to find a valuation
model that is fair to the tax authority and to property owners. The
tax authority should not lose tax revenues and properties should
not be unduly over-valuated. We find that quantile regression is
well suited to incorporating these implementation concerns. We
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note that challenges to new property valuations are expensive to
resolve.

The intent of the paper is to illustrate the utility of valuating
residential property using the hedonic linear regression model
and parametric programming. The focus is on the loss resulting
from model implementation and not the statistical precision of
the estimated regression coefficients or the performance of the he-
donic model vis-a-vis other specifications of residential property
valuation. The valuation techniques addressed in this paper are
comparative methods that valuate property in the company of
other properties that share a common feature such as location or
a temporal aspect such as members of a set of properties scheduled
for periodic re-valuation.

The rest of the paper is organized as follows. In the next section,
we review regression modeling of residential property valuation
under various criteria including regression quantiles and provide
an example. In Section 3, we present a brief literature review of
methods for valuating residential property and regression model-
ing of the same with emphasis on quantile regression. The mathe-
matical parametric programming formulation of the quantile
regression problem is given in Section 4 and discussion of model
selection appears in Section 5. We conclude the paper with re-
marks in Section 6.

2. Regression modeling of residential property valuation

For a single equation multiple linear regression model, let y de-
note the n � 1 vector of observed values of the response variable
corresponding to X, the n � k matrix of the values of k predictor
(or regressor) variables that may include a column of ones to rep-
resent an intercept term. Then

y ¼ Xbþ e ð1Þ

where b is the k � 1 vector of unknown parameters and e is the
n � 1 vector of unobservable random disturbances in y. In the appli-
cation of (1) to valuating residential property, y represents the cur-
rent valuations of single-family residential properties; X, the
physical characteristics or attributes of the properties; and n, the
number of properties to be valuated.

When the single equation linear regression model (1) is used for
property valuation, the regression residual is the magnitude of the
adjustment in the property’s valuation. The negative residual indi-
cates that the valuation obtained from the regression model is
above the current valuation and increases the tax base and tax rev-
enue derived from it. The positive regression residual indicates the
contrary. When the property is valuated above (below) a threshold
percent of perceived fair adjustment, the owner may (not) chal-
lenge the new valuation. Hence the loss (change in tax base and
the number of challenges to new property assessments) associated
with implementing valuations derived from the regression model
are related to the absolute and relative magnitudes of the regres-
sion residuals. The net increase in property valuations is the sum
of the absolute negative regression residuals minus the sum of po-
sitive residuals.

Consider the real estate data (available at http://users.ipfw.edu/
wellingj/) that consists of 54 observations on y, the current valua-
tions of the set of properties, and ten predictor variables x1, . . . ,x10

that represent respectively taxes, number of baths, frontage (feet),
lot size (square feet), living space (square feet), number of garages,
number of rooms, number of bedrooms, age of home (years), and
number of fireplaces. Because y is zero when the values of variables
x1, . . . ,x10 are zero, the intercept term is omitted in modeling the
data in the manner of (1).

2.1. Least squares, minimum sum of absolute errors, and multiple
criteria regression models

The least squares (LS) regression modeling of the data resulted
in net increase in property valuations of �$8,545, i.e. if the model
were used to valuate the properties, the tax base for the fifty-four
properties would be $8,545 below current aggregate valuations,
see Table 1. Fitting the data to (1) under the minimum sum of
absolute errors (MSAE) criterion produced net increase of
$155,496. The maximum relative increase in valuation is 45.89%
for the LS model and 67.18% for the MSAE model. For the LS result,
the number of valuations that would increase by at least 10% and
20% is 16 and 7, respectively; for the MSAE model, the counts are
14 and 6 respectively.

Narula and Wellington (2007) proposed a multiple criteria
methodology for valuating residential properties. The results of
maximizing the net increase in property valuations subject to five
bounds (660%,50%,40%,32.5% and 31.5%) of allowable relative
change in any property valuation are reported in Table 1. The net
increase in property valuations for Models 1–3 exceeds the values
for the LS and MSAE models. However, the number of property val-
uations above 10% and 20% of their current values for each of the
five models is higher than the counts for the LS or the MSAE
models.

2.2. Quantile regression and parametric programming

Koenker and Bassett (1978) formulated the regression quantile
problem as a linear parametric programming problem and as such
defined a family of regression models. The formulation is a func-
tion of a single parameter that describes the fraction of the regres-
sion residuals with negative values. The parameter is often
denoted by h and defined over the interval [0,1]. When applied
to valuating residential property, the parameter describes the frac-
tion of property valuations in the data set that are valuated above
current values (y). The number of regression quantile models asso-
ciated with a data set is of order n.

When the value of h equals zero, all regression residuals are
non-negative, i.e., all properties valuations derived from the h = 0
regression quantile model are no greater than current values. On
the other hand, when the value of h equals one, all residuals are
non-positive, i.e., all property valuations obtained from the h = 1
regression quantile model are at or above current values. Clearly,
the regression quantile models for h near zero are not desirable be-
cause the resulting tax base would be smaller and the tax authority
would lose revenue; for h near one, many of the resulting valua-
tions may be above the property owners’ perceived thresholds of
fair adjustment and in consequence generate many challenges by
property owners.

Fig. 1 is the display of the empirical regression quantile function
(net increase in property valuations versus h) for the real estate

Table 1
The loss measures for the LS, MSAE, and multiple criteria regression models.

Model Maximum
percentage
change in
valuations

Net gain in
valuations
($000)

No. of
valuations
increased 10%
or more

No. of
valuations
increased 20%
or more

LS 45.89 �8.545 16 7
MSAE 67.18 155.496 14 6
Multiple criteria models
1 60 2579.395 39 32
2 50 1776.410 35 26
3 40 865.262 30 16
4 32.5 54.455 17 10
5 31.5 �61.362 17 10
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