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a b s t r a c t

Three new bounds for periodicity theorems on the unbounded Knapsack problem are developed. Period-
icity theorems specify when it is optimal to pack one unit of the best item (the one with the highest
profit-to-weight ratio). The successive applications of periodicity theorems can drastically reduce the size
of the Knapsack problem under analysis, theoretical or empirical. We prove that each new bound is tight
in the sense that no smaller bound exists under the given condition.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Knapsack problem is one of the most celebrated problems
in operations research; not only because of its direct application
to problems arising in the real world, but also because of its contri-
bution to the solution methods for integer programming problems
[2]. The unbounded Knapsack problem (UKP) can be stated as fol-
lows. Given a knapsack with known weight capacity and an unlim-
ited supply of items, each with a given unit profit and unit weight,
how can one pack the knapsack with integral amounts of items so
as to maximize the profit of the load carried?

It is well known that this problem is NP-hard [3]. Many
researchers have discovered numerous properties of the problem
and developed a host of algorithms to utilize these findings [1,9–
11,16,18,19]. A comprehensive discussion can be found in [6],
and very recent efforts are presented in [13,17]. The two classic ap-
proaches for solving the Knapsack problem are branch and bound
[10] and dynamic programming [12]. However, it is often possible
to drastically reduce the size of the problem to be solved even be-
fore applying one of these approaches. Specifically, one such way of
cutting down the computational requirements of problems with
large, but bounded weight capacities is to employ turnpike theo-
rems [4,8,15]. The turnpike theorem is also described as periodicity
property [5]. If the items are indexed according to the non-
increasing order of their profit-to-weight ratios, then for a large en-
ough weight capacity it can be shown that it is optimal to pack at

least one unit of the best item (the one with the highest profit-to-
weight ratio). Periodicity theorems specify lower bounds on what
constitute such large enough capacity, and their successive appli-
cations can drastically reduce the right-hand-sides. ‘‘Dynamic pro-
gramming approaches are (often unjustly) rejected out of hand for
large capacities, and it is thus important to study how the capacity
affects the running time [1].’’ The periodicity property is a well
known approach to reduce the search space for dynamic program-
ming based algorithms.

The primary goal of this paper is to provide tight bounds and,
thus, more effective periodicity theorems for the unbounded Knap-
sack problem. The plan of our paper is as follows. In Section 2, we
introduce the notation and then develop the first tight bound,
which is shown to subsume a known result attributed to Hu [8]
by Garfinkel and Nemhauser [4]. In Section 3, we develop the sec-
ond tight bound and show that it subsumes another known result
from Garfinkel and Nemhauser [4]. The third tight bound, which is
built on top of the first result, is developed in Section 4. Number
theory is used to prove new theorems. Experimental results are
discussed in Section 5 and the paper concludes in Section 6.

2. Preliminaries and the first periodicity theorem

The unbounded Knapsack problem (UKP) can be stated as fol-
lows: given an unlimited number of items of n types, where each
item of type j 2 {1,2, . . . ,n} has a weight wj > 0, and a profit pj > 0,
how can one fill a knapsack with weight capacity c > 0 to maximize
the profit of the load carried? More formally, one wants to find
non-negative integers {x1,x2, . . . ,xn} in order to
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maximize
Xn

j¼1

pjxj

subject to
Xn

j¼1

wjxj 6 c;

where all data involved are assumed integral. It is known that dy-
namic programming takes O(nc) time to solve a UKP. As noted in
the introduction, one way to reduce the size of a problem with
large, but bounded, right-hand-side is to employ periodicity theo-
rems. If we index items according to the non-increasing order of
their profit-to-weight ratios, vj = pj/wj, so that v1P v2P v3 P . . .,
then for large enough capacity we can prove that it is optimal to
pack at least one unit of item 1 (the item corresponding to the high-
est ratio v1) into the knapsack. A periodicity theorem specifies a
lower bound on what constitutes such large enough capacity under
a given condition.

In constructing an optimal solution of a UKP, we (inductively)
want to decide if at least one unit of item 1 should be packed into
the knapsack. Certainly if it is optimal to pack one unit of item 1,
then there is a reduction of the (remaining) capacity. Before pre-
senting our first theorem, we will state and prove a simple lemma.

Lemma 2.1. Let q be a positive integer and s be a real number where
q 6 s, then we have

q
qþ 1

s < bsc; where bsc ¼ largest integer 6 s:

Proof. 1 The left-hand-side of the inequality is increasing with inte-
ger q, and q 6 s) q 6 bsc. Therefore, it is sufficient to show its valid-
ity for q = bsc. Since for any real number s, we have s < bsc + 1. Clearly
bsc
bscþ1 s < bsc holds, and thus completes the proof. h

Note that the interval [0,1) can be written as the disjoint union

of intervals of the form q�1
q ; q

qþ1

h �
, i.e., [0,1) =

S1
q¼1

q�1
q ; q

qþ1

h �
, and any

real number r, 0 6 r < 1, falls precisely into one of the above subin-
tervals. We now have the following theorem.

Theorem 2.2. Assume p1
w1
> p2

w2
, i.e., v1 > v2, and let the positive integer

q be uniquely determined by q�1
q 6

v2
v1
< q

qþ1, then there is a bound of

capacity hI = qw1 such that if c P hI, any optimal solution includes at
least one unit of item 1.

Proof. Given v1 > v2 P v3 P . . ., if none of item 1 is packed, then
the total value z of the objective function must have z 6 cv2, it leads
to z < c q

qþ1 v1

� �
due to the assumption that v2

v1
< q

qþ1. Therefore, we
have

z < c
q

qþ 1
v1 ð2:1Þ

and we want to show that any solution without item 1 cannot be
optimal under the given condition.

First, we claim that

c
q

qþ 1
v1 <

c
w1

� �
p1: ð2:2Þ

Note that the right-hand-side of (2.2) is the value of filling the knap-
sack with as many units of item 1 as possible (which is certainly al-
lowed). The above claim establishes our theorem.

Now let us prove our claim. By definition, v1
p1
¼ 1

w1
. Thus,

inequality (2.2) is equivalent to q
qþ1

� �
c

w1
< c

w1

j k
, and this follows

at once from Lemma 2.1 by taking s ¼ c
w1

(note that c P qw1 in the
assumption, so q 6 c

w1
satisfies). Therefore, inequality (2.2) holds.

Inequalities (2.1) and (2.2) together yield z < c
w1

j k
p1.

The above right-hand-side is equal to the objective function
value of filling the knapsack with allowable units of item 1. Thus,
the initial solution without item 1 cannot be optimal. Therefore,
any optimal solution must include at least one unit of item 1. h

In fact, hI = qw1 is a tight bound in the sense that no smaller
bound exists under the conditions specified in Theorem 2.2. The
following proposition validates this.

Proposition 2.3. Given the assumptions of Theorem 2.2, there exist
examples such that if c = hI � 1, then it is not optimal to pack item 1.

Proof. Consider three types of items with v1 = 2q + 1, v2 = 2q � 1,
and v3 ¼ 1

2, where q is any positive integer. Their corresponding
unit weights are w1 > 4q, w2 = qw1 � 1, and w3 = 1. It is easy to ver-
ify that v1 > v2, and q�1

q 6
v2
v1
< q

qþ1. Hence, we have a bound hI = qw1

by Theorem 2.2. Now let c = hI � 1 = qw1 � 1. Apparently, we can
pack one unit of item 2 into the knapsack, and the objective func-
tion value is

z� ¼ v2w2 ¼ ð2q� 1Þðqw1 � 1Þ ¼ 2w1q2 �w1q� 2qþ 1:

We claim that for any solution including item 1, the resulting value
is strictly less than z⁄. Suppose we pack one unit of item 1, then the
remaining capacity becomes c � w1 = (qw1 � 1) � w1 < qw1 �
1 = w2. Thus, no item 2 will fit and it limits our choices to item 1
and item 3 only. We assume that altogether there are t units of item
1 packed (it must have t < q since c = qw1 � 1), and the rest capacity
is filled with a suitable units of item 3. Thus, the resulting value z is

z ¼ tw1v1 þ ðc � tw1Þ � 1 � v3 ¼ tw1ð2qþ 1Þ þ ðqw1 � 1� tw1Þ
1
2

¼ 2tw1qþ 1
2

tw1 þ
1
2

qw1 �
1
2
:

Notice that z increases with t, and it reaches its maximum when
t = q � 1. Therefore, we have

z 6 2ðq� 1Þw1qþ 1
2
ðq� 1Þw1 þ

1
2

qw1 �
1
2

¼ 2w1q2 �w1q� 1
2
ðw1 þ 1Þ < 2w1q2 �w1q� 1

2
ð4qþ 1Þ

< 2w1q2 �w1q� 2qþ 1 ¼ z�:

Hence, it is not optimal to pack item 1 into the knapsack. Thus, one
cannot improve on hI. h

We also observe that Theorem 2.2 subsumes a known result,
attributed to Hu [8] by Garfinkel and Nemhauser [4]. Hu’s result
is less emphatic since it states only the existence of an optimal
solution that includes item 1.

Corollary 2.4. [Hu’s bound] Let us assume that p1
w1
> p2

w2
, i.e.,v1 > v2,

then there is a bound of capacity kI ¼ p1
v1�v2

such that if c P kI, it is
optimal to pack at least one unit of item 1.

Proof. Refer to notation in Theorem 2.2. There exists a unique
positive integer q that is the maximal possible and satisfies the fol-
lowing inequality,
q� 1

q
6

v2

v1
() v1 �

1
q

v1 6 v2 () v1 � v2 6
1
q

v1 ()

p1

v1 � v2
P q

p1

v1

� �
¼ qw1:

i.e., kI P hI. Thus, c P kI implies c P hI, and the corollary follows
from Theorem 2.2. h1 This proof was suggested by one of the referees.
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