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The constrained maximum flow problem is to send the maximum flow from a source to a sink in a direc-
ted capacitated network where each arc has a cost and the total cost of the flow cannot exceed a budget.
This problem is similar to some variants of classical problems such as the constrained shortest path
problem, constrained transportation problem, or constrained assignment problem, all of which have
important applications in practice. The constrained maximum flow problem itself has important
applications, such as in logistics, telecommunications and computer networks. In this research, we
present an efficient specialized network simplex algorithm that significantly outperforms the two widely
used LP solvers: CPLEX and Ip_solve. We report CPU times of an average of 27 times faster than CPLEX
(with its dual simplex algorithm), the closest competitor of our algorithm.
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1. Introduction

Let G = (N,A) be a directed network consisting of a set N of nodes
and a set A of arcs. In this network, the flow on each arc (i,j) is rep-
resented by the nonnegative variable x;;, with a cost ¢; and capacity
u;;. The constrained maximum flow problem is to send the maxi-
mum possible flow from a source node s to a sink node t where
the total cost of the flow is constrained by the budget, D. For ease
of exposition, we assume that there is an arc (t,s) € A with ¢;=0
and uy = oo, and that there exists a path from s to t in the network.
The problem then can be formulated as the following linear
program:

[CMF_LP] max X (1.1a)
s.t.
doxj— Y xi=0 VieN, (1.1b)
(ij)eA (.i)eA
> ey <D, (1.1c)
(ij)€A
0<x;<uy Y(ij)eA (1.1d)

Eq. (1.1b) are called the balance or conservation of flow constraints.
Eq. (1.1c) is called the budget constraint. Eq. (1.1d) are the upper
and lower bound constraints.

It is important to study this problem both from theoretical and
practical points of view, because it may provide insight into similar
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important problems such as the constrained shortest path prob-
lem, constrained transportation problem, or constrained assign-
ment problem, all of which have important applications in
practice. The constrained maximum flow problem itself has impor-
tant applications as well. Some examples can be described as
follows: (1) In a physical distribution network, each node repre-
sents a distribution center, which could be an origin, destination,
or a transit point for the flow of goods. Each arc represents a mode
of transportation between two distribution centers and has a cost
and capacity. The objective is to determine the capacity of the dis-
tribution network, or the maximum flow between all origin and
destination nodes subject to the transportation budget. (2) The
same framework can be used to model computer networks where
the objective is to maximize the packets transferred between
sources and sinks and the total transfer cost is constrained.

In this research, we present an efficient specialized network
simplex algorithm for the constrained maximum flow problem,
and compare its computational performance against the two
widely used LP solvers CPLEX and Ip_solve, as well as the double
scaling algorithm that we propose in Caliskan (2008). We used
two network generators in our experiments: the generator that
we describe in Caliskan (2008) and the NETGEN generator that is
described in Klingman et al. (1974). The key contribution of our re-
search is that the specialized simplex algorithm is directly carried
out on the network in a particularly efficient fashion. The algorith-
mic steps of the simplex algorithm (finding improving columns,
updating the basis components, and re-computing the primal
and dual solutions) are carried out efficiently by isolating and
exploiting the maximum flow network substructure and integrating
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the side constraint into the tree structure of the basis. To our
knowledge, our algorithm is the first to specialize the simplex algo-
rithm for the constrained maximum flow problem.

The rest of the paper is organized as follows: first, we provide a
review of the related literature in Section 2; then we present the
details of the proposed algorithm and discuss an extension to the
algorithm in Section 3; then we provide the results of our compu-
tational experiments in Section 4; and finally, we present the con-
clusions in Section 5.

2. Literature review

Network flow problems with side constraints may sometimes
be solved as pure network problems by replacing the side con-
straints with a number of flow balance equations and a few addi-
tional nodes and arcs (Glover et al, 1974; Klingman, 1977).
Unfortunately, this transformation is not possible in general, but
significant computational improvement is still possible by special-
izing the simplex algorithm. Klingman and Russell (1975, 1978),
Glover et al. (1978) propose specializations for the constrained
transportation and transshipment problems. Graves and McBride
(1976) propose a general framework for the simplex algorithm
where an embedded network structure, generalized upper bound
constraints, and block diagonal structure are present. Brown and
Olson (1994) present a general row factorization framework for
generalized upper bound and network rows. Chen and Saigal
(1977), Glover and Klingman (1981, 1985) propose specialized
simplex algorithms for networks with side constraints. McBride
(1985) proposes another specialized simplex algorithm called EM-
NET that handles networks with side constraints and side vari-
ables. McBride and Mamer (1997, 2001), McBride (1998), Mamer
and McBride (2000) describe several implementations of the EM-
NET algorithm for the multicommodity flow problem. Spalti and
Liebling (1991) study a special case of the singly constrained net-
work flow problem that arises in the context of an optimal satellite
placement problem and propose a specialized simplex algorithm.
More recently, Fang and Qi (2003), Mo et al. (2005a,b), Lu et al.
(2006), Venkateshan et al. (2008) specialize the generalized net-
work simplex algorithm for networks that arise in the context of
assembly and distillation operations in supply chains.

Lagrangian relaxation is also used for networks with side con-
straints. Belling-Seib et al. (1988) compares Lagrangian relaxation
with primal and dual simplex for the singly constrained network
flow problem, whereas Bryson (1991) proposes another Lagrangian
relaxation approach. Mathies and Mevert (1998) propose a hybrid
of primal simplex and Lagrangian relaxation.

Since the labeling algorithm of Ford and Fulkerson (1956), many
algorithms were proposed for the classical maximum flow prob-
lem, but its variants received little interest. Fulkerson (1959) de-
scribes a maximum flow problem with an additional convex
budget constraint. Malek-Zavarei and Frisch (1971) describe a
maximum flow problem with side constraints on some nodes
and propose a heuristic solution. Ahuja and Orlin (1995) introduce
the constrained maximum flow problem that we study in this pa-
per and propose a polynomial time capacity scaling algorithm. In
Galiskan (2009), we point out that in some cases Ahuja and Orlin
(1995)’s algorithm does not converge to the optimal solution and
propose a slight modification to the algorithm. To this date, no spe-
cialized simplex algorithm was proposed for the constrained max-
imum flow problem. In the simplex algorithm specialized for the
maximum flow problem, dual variables and reduced costs do not
require explicit calculation due to the special structure of the basis.
If the simplex algorithm is specialized for the constrained maxi-
mum flow problem, the resulting algorithm will benefit from this
special structure as well. To our knowledge, our paper is the first

to exploit the special structure of the maximum flow problem to
devise an efficient simplex implementation for the constrained
maximum flow problem.

Throughout the next section, we present the theoretical devel-
opment of the specialized simplex algorithm for the constrained
maximum flow problem. We only present what is new in our the-
oretical development and give appropriate references to prior work
whenever it is necessary.

3. The specialized network simplex algorithm

A basis of the maximum flow problem consists of a pair of sub-
trees that are rooted at nodes s and t connected by the arc (t,s),
which is always basic. The two subtrees and the artificial arc form
a spanning tree of the network (see Ahuja et al., 1993, p. 430). We
denote the spanning tree T; the set of arcs in the source subtree, S;
and the set of arcs in the sink subtree, Z. In the constrained maxi-
mum flow problem, there is one more arc in the basis that forms a
unique cycle on the spanning tree, which is called a fundamental
cycle. We denote the additional arc, (a,b); its fundamental cycle,
Y/(a,b); and the total (net) cost around y/(a,b) when the cycle is tra-
versed in the direction of (a,b), Cy ). The arc (a,b) connects either
two nodes from different subtrees, or two nodes of the same sub-
tree. We call the former an “inter-subtree arc,” and the latter an
“intra-subtree arc” (see Fig. 1). Thus, a basis of the constrained
maximum flow problem consists of the subtrees S and Z, the
non-tree basic arc (a,b), and the arc (t,s).

Lemma 1. For a basis B of the constrained maximum flow problem,
Cl//(a,b) # 0.

Proof. Assume that Cyp)=0. If we add all columns of [CMF_LP]
corresponding to the arcs of /(a,b), the result will be 0 for all rows
corresponding to the balance equations and Cyq) for the row cor-
responding to the budget constraint. But this means these arcs are
not linearly independent and B cannot be a basis. Therefore, Cy(q,)
must be nonzero. O

The proposed specialized simplex algorithm solves a maximum
flow problem. If the maximum flow from s to t does not violate the
budget constraint, then this maximum flow is the optimal solution
to the constrained maximum flow problem. Otherwise, there is an
optimal solution that satisfies the budget constraint exactly.
Henceforth, we assume that the budget constraint is satisfied
exactly.

3.1. Optimality conditions

We denote the dual variables corresponding to the balance
equations by 7, and the dual variable corresponding to the budget
constraint by 1. We define the reduced cost for an arc (i,j) € A as
Cj = —T; + 7; — Acy. For a given flow x, we denote the set of arcs
with flow equal to their upper bounds by U, and the set of arcs with
flow equal to their lower bounds by L. Then, ¥ will be optimal if and
only if:

C;j < 0 for every arc (i,j) € L,
¢;j = 0 for every arc (i,j) € U. (3.1)

If an arc violates the above optimality conditions, then we may en-
ter it into the basis and improve the solution.

Lemma 2. If(a,b) is an inter-subtree arc from S to Z, 2. = 1/Cyap), if it
is an inter-subtree arc from Z to S, .= —1/Cyqp), and if it is an intra-
subtree arc, A=0.
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