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a b s t r a c t

Robust portfolio optimization aims to maximize the worst-case portfolio return given that the asset
returns are allowed to vary within a prescribed uncertainty set. If the uncertainty set is not too large,
the resulting portfolio performs well under normal market conditions. However, its performance may
substantially degrade in the presence of market crashes, that is, if the asset returns materialize far outside
of the uncertainty set. We propose a novel robust optimization model for designing portfolios that
include European-style options. This model trades off weak and strong guarantees on the worst-case
portfolio return. The weak guarantee applies as long as the asset returns are realized within the pre-
scribed uncertainty set, while the strong guarantee applies for all possible asset returns. The resulting
model constitutes a convex second-order cone program, which is amenable to efficient numerical solu-
tion procedures. We evaluate the model using simulated and empirical backtests and analyze the impact
of the insurance guarantees on the portfolio performance.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Investors face the challenging problem of how to distribute
their current wealth over a set of available assets, such as stocks,
bonds, and derivatives, with the goal to earn the highest possible
future wealth. One of the first mathematical models for this prob-
lem was formulated by Markowitz [32]. In his Nobel prize-winning
work, he observed that a rational investor does not aim solely at
maximizing the expected return of an investment, but also at min-
imizing its risk. In the Markowitz model, the risk of a portfolio is
measured by the variance of the portfolio return. A practical advan-
tage of the Markowitz model is that it reduces to a convex qua-
dratic program, which can be solved efficiently.

Although the Markowitz model has triggered a tremendous
amount of research activities in the field of finance, it has serious
disadvantages which have discouraged practitioners from using
it. The main problem is that the means and covariances of the asset
returns, which are important inputs to the model, have to be esti-
mated from noisy data. Hence, these estimates are not accurate. In
fact, it is fundamentally impossible to estimate the mean returns
with statistical methods to within workable precision, a phenome-
non which is sometimes referred to as mean blur [29,34]. Unfortu-
nately, the mean–variance model is very sensitive to the
distributional input parameters. As a result, the model amplifies
any estimation errors, yielding extreme portfolios which perform
badly in out-of-sample tests [16,12,36,18].

Many attempts have been undertaken to ease this amplification
of estimation errors. Black and Litterman [10] suggest Bayesian
estimation of the means and covariances using the market portfo-
lio as a prior. Jagannathan and Ma [26] as well as Chopra [14] im-
pose portfolio constraints in order to guide the optimization
process towards more intuitive and diversified portfolios. Chopra
et al. [15] use a James–Steiner estimator for the means which tilts
the optimal allocations towards the minimum-variance portfolio,
while DeMiguel and Nogales [18] employ robust estimators.

In recent years, robust optimization has received considerable
attention. Robust optimization is a powerful modeling paradigm
for decision problems subject to non-stochastic data uncertainty
[6]. The uncertain problem parameters are assumed to be
unknown but confined to an uncertainty set, which reflects the
decision maker’s uncertainty about the parameters. Robust optimi-
zation models aim to find the best decision in view of the worst-
case parameter values within these sets. Ben-Tal and Nemirovski
[7] propose a robust optimization model to immunize a portfolio
against the uncertainty in the asset returns. They show that when
the asset returns can vary within an ellipsoidal uncertainty set
determined through their means and covariances, the resulting
optimization problem is reminiscent of the Markowitz model. This
robust portfolio selection model still assumes that the distribu-
tional input parameters are known precisely. Therefore, it suffers
from the same shortcomings as the Markowitz model.

Robust portfolio optimization can also be used to immunize a
portfolio against the uncertainty in the distributional input param-
eters. Goldfarb and Iyengar [22] use statistical methods for con-
structing uncertainty sets for factor models of the asset returns
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and show that their robust portfolio problem can be reformulated
as a second-order cone program. Tütüncü and Koenig [41] propose
a model with box uncertainty sets for the means and covariances
and show that the arising model can be reduced to a smooth sad-
dle-point problem subject to semidefinite constraints. Rustem and
Howe [39] describe algorithms to solve general continuous and
discrete minimax problems and present several applications of
worst-case optimization for risk management. Rustem et al. [38]
propose a model that optimizes the worst-case portfolio return un-
der rival risk and return forecasts in a discrete minimax setting. El
Ghaoui et al. [20] show that the worst-case Value-at-Risk under
partial information on the moments can be formulated as a semi-
definite program. Ben-Tal et al. [5] as well as Bertsimas and Pacha-
manova [9] suggest robust portfolio models in a multi-period
setting. A recent survey of applications of robust portfolio optimi-
zation is provided in the monograph [21]. Robust portfolios of this
kind are relatively insensitive to the distributional input parame-
ters and typically outperform classical Markowitz portfolios [13].

Robust portfolios exhibit a non-inferiority property [38]: when-
ever the asset returns are realized within the prescribed uncer-
tainty set, the realized portfolio return will be greater than or
equal to the calculated worst-case portfolio return. Note that this
property may fail to hold when the asset returns happen to fall
outside of the uncertainty set. In this sense, the non-inferiority
property only offers a weak guarantee. When a rare event (such
as a market crash) occurs, the asset returns can materialize far be-
yond the uncertainty set, and hence the robust portfolio will re-
main unprotected. A straightforward way to overcome this
problem is to enlarge the uncertainty set to cover also the most ex-
treme events. However, this can lead to robust portfolios that are
too conservative and perform poorly under normal market
conditions.

In this paper we will use portfolio insurance to hedge against
rare events which are not captured by a reasonably sized uncer-
tainty set. Classical portfolio insurance is a well studied topic in fi-
nance. The idea is to enrich a portfolio with specific derivative
products in order to obtain a deterministic lower bound on the
portfolio return. The insurance holds for all possible realizations
of the asset returns and can therefore be qualified as a strong guar-
antee. Numerous studies have investigated the integration of op-
tions in portfolio optimization models. Ahn et al. [1] minimize
the Value-at-Risk of a portfolio consisting of a single stock and a
put option by controlling the portfolio weights and the option
strike price. Dert and Oldenkamp [19] propose a model that max-
imizes the expected return of a portfolio consisting of a single in-
dex stock and several European options while guaranteeing a
maximum loss. Howe et al. [24] introduce a risk management
strategy for the writer of a European call option based on minimax
using box uncertainty. Lutgens et al. [30] propose a robust optimi-
zation model for option hedging using ellipsoidal uncertainty sets.
They formulate their model as a second-order cone program which
may have, in the worst-case, an exponential number of conic
constraints.

This paper combines robust portfolio optimization and classical
portfolio insurance with the objective of providing two layers of
guarantees. The weak non-inferiority guarantee applies as long as
the returns are realized within the uncertainty set, while the strong
portfolio insurance guarantee also covers cases in which the re-
turns are realized outside of the uncertainty set. The ideas set
out in this paper are related to the concept of Comprehensive
Robustness proposed by Ben-Tal et al. [4]. Comprehensive Robust-
ness aims to control the deterioration in performance when the
uncertainties materialize outside of the uncertainty set. Our work
establishes the relationship between offering guarantees beyond
the uncertainty set and portfolio insurance. Indeed, we will show
that in order to control the deterioration in portfolio return, our

model will allocate wealth in put and call options. The premia of
these options will determine the cost to satisfy the guarantee lev-
els. Our contributions can be summarized as follows:

(1) We extend the existing robust portfolio optimization models
to include options as well as stocks. Because option returns
are convex piece-wise linear functions of the underlying
stock returns, options cannot be treated as additional stocks,
and the use of an ellipsoidal uncertainty set is no longer ade-
quate. Under a no short-sales restriction on the options, we
demonstrate how our model can be reformulated as a con-
vex second-order cone program that scales gracefully with
the number of stocks and options. We also show that our
model implicitly minimizes a coherent risk measure [3].
Coherency is a desirable property from a risk management
viewpoint.

(2) We describe how the options in the portfolio can be used to
obtain additional strong guarantees on the worst-case port-
folio return even when the stock returns are realized outside
of the uncertainty set. We show that the arising Insured
Robust Portfolio Optimization model trades off the guarantees
provided through the non-inferiority property and the
derivative insurance strategy. Using conic duality, we refor-
mulate this model as a tractable second-order cone
program.

(3) We perform a variety of numerical experiments using simu-
lated as well as real market data. In our simulated tests we
illustrate the tradeoff between the non-inferiority guarantee
and the strong insurance guarantee. We also evaluate the
performance of the Insured Robust Portfolio Optimization
model under ‘‘normal” market conditions, in which the asset
prices are governed by geometric Brownian motions, as well
as in a market environment in which the prices experience
significant downward jumps. The impact of the insurance
guarantees on the portfolio performance is also analyzed
using real market prices.

The rest of the paper is organized as follows. In Section 2 we re-
view robust portfolio optimization and elaborate on the non-infe-
riority guarantee. In Section 3 we show how a portfolio that
contains options can be modelled in a robust optimization frame-
work and how strong insurance guarantees can be imposed on the
worst-case portfolio return. We also demonstrate how the result-
ing model can be formulated as a tractable second-order cone pro-
gram. In Section 4 we report on numerical tests in which we
compare the insured robust model with the standard robust model
as well as the classical mean–variance model. We run simulated as
well as empirical backtests. Conclusions are drawn in Section 5,
and a notational reference table is provided in Appendix A.1.

2. Robust portfolio optimization

Consider a market consisting of n stocks. Moreover, denote the
current time as t = 0 and the end of investment horizon as t = T. A
portfolio is completely characterized by a vector of weights
w 2 Rn, whose elements add up to 1. The component wi denotes
the percentage of total wealth which is invested in the ith stock
at time t = 0. Furthermore, let ~r denote the random vector of total
stock returns over the investment horizon, which takes values in
Rn
þ. By definition, the investor will receive ~ri dollars at time T for

every dollar invested in stock i at time 0. We will always denote
random variables by symbols with tildes, while their realizations
are denoted by the same symbols without tildes.

The return vector ~r is representable as:

~r ¼ lþ ~�; ð1Þ
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