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a b s t r a c t

In this study, a novel adaptive neural network (ADNN) with the adaptive metrics of inputs and a new
mechanism for admixture of outputs is proposed for time-series prediction. The adaptive metrics of
inputs can solve the problems of amplitude changing and trend determination, and avoid the over-fitting
of networks. The new mechanism for admixture of outputs can adjust forecasting results by the relative
error and make them more accurate. The proposed ADNN method can predict periodical time-series with
a complicated structure. The experimental results show that the proposed model outperforms the auto-
regression (AR), artificial neural network (ANN), and adaptive k-nearest neighbors (AKN) models. The ADNN
model is proved to benefit from the merits of the ANN and the AKN through its’ novel structure with high
robustness particularly for both chaotic and real time-series predictions.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Many planning activities require prediction of the behavior of
variables (e.g. economic, financial, traffic and physical). The predic-
tions support the strategic decisions of organizations (Makridakis,
1996), which in turn sustain a practical interest in forecasting
methods. Time-series methods are generally used to model fore-
casting systems when there is not much information about the
generation process of the underlying variable and when other vari-
ables provide no clear explanation about the studied variable
(Zhang, 2003).

Time-series forecasting is used to forecast the future based on
historical observations (Makridakis et al., 1998). There have been
many approaches to modeling time-series dependent on the the-
ory or assumption about the relationship in the data (Huarng
and Yu, 2006; Chen and Hwang, 2000; Taylor and Buizza, 2002;
Kim and Kim, 1997; Zhang et al., 1998; Wang and Chien, 2006;
Singh and Deo, 2007). Traditional methods, such as time-series
regression, exponential smoothing and autoregressive integrated
moving average (Brooks, 2002) (ARIMA), are based on linear mod-
els. All these methods assume linear relationships among the past
values of the forecast variable and therefore non-linear patterns
cannot be captured by these models. One problem that makes
developing and implementing this type of time-series model diffi-
cult is that the model must be specified and a probability distribu-
tion for data must be assumed (Hansen et al., 2002).
Approximation of linear models to complex real-world problems
is not always satisfactory.

Recently, artificial neural networks (ANN) have been proposed
as a promising alternative to time-series forecasting. A large num-
ber of successful applications have shown that neural networks
can be a very useful tool for time-series modeling and forecasting
(Adya and Collopy, 1998; Zhang et al., 1998; Celik and Karatepe,
2007; Wang and Chien, 2006; Sahoo and Ray, 2006; Singh and
Deo, 2007; Barbounis and Teocharis, 2007; Bodyanskiy and Popov,
2006; Freitas and Rodrigues, 2006). The reason is that the ANN is a
universal function approximator which is capable of mapping any
linear or non-linear functions (Cybenko, 1989; Funahashi, 1989).
Neural networks are basically a data-driven method with few pri-
ori assumptions about underlying models. Instead they let data
speak for themselves and have the capability to identify the under-
lying functional relationship among the data. In addition, the ANN
is capable of tolerating the presence of chaotic components and
thus is better than most methods (Masters, 1995). This capacity
is particularly important, as many relevant time-series possess sig-
nificant chaotic components.

However, since the neural network lacks a systematic proce-
dure for model-building, the forecasting result is not always accu-
rate when the input data is very different from the training data.
Like other flexible non-linear estimation methods such as kernel
regression and smoothing splines, the ANN may suffer either
under-fitting or over-fitting (Moody, 1992; Geman et al., 1992;
Bartlett, 1997). A network that is not sufficiently complex can fail
to fully detect the signal in a complicated data set and lead to
under-fitting. A network that is too complex may fit not only the
signal but also the noise and lead to over-fitting. Over-fitting is
especially misleading because it can easily lead to wild prediction
far beyond the range of the training data even with the noise-free
data. In order to solve this problem, a novel ANN model is proposed
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in this study with the adaptive metrics of inputs, and the output
data is evolved by a mechanism for admixture. The adaptive met-
rics of inputs of the model can adapt to local variations of trends
and amplitudes. Most inputs of the network are close to the histor-
ical data in order to avoid a dramatic increase in the forecasting er-
ror due to the big difference between training data and input data.
In using the proposed mechanism for admixture of outputs, the
forecasting result can be adjusted by the relative error, making
the forecasting result more accurate.

The forecasting results generated by the proposed model are
compared with those obtained by the traditional statistical AR
model, traditional ANN architectures (BP network), and adaptive
k-nearest neighbors (AKN) method (Kulesh et al., 2008) in the re-
lated literature. The experimental results indicate that the pro-
posed model outperforms the other models, especially in chaotic
and real data time-series predictions.

This paper is organized as follows. In the next section, the fun-
damental principle of the proposed method is introduced. The
experimental results are presented in Section 3. The last section
concludes this study.

2. Methodology

We focus on one-step-ahead point forecasting in this work. Let
y1,y2,y3, . . . ,yt be a time-series. At time t for t P 1, the next value
yt+1 will be predicted based on the observed realizations of
yt,yt�1,yt�2, . . . ,y1.

2.1. The ANN approach to time-series modeling

The ANN is a flexible computing framework for a broad range of
non-linear problems (Wong et al., 2000). The network model is
greatly determined by data characteristics. A single hidden-layer
feed-forward network is the most widely used model for time-ser-
ies modeling and forecasting (Zhang and Qi, 2005). The model is
characterized by a network of three layers of simple processing
units connected by acyclic links. The hidden layers can capture
the non-linear relationship among variables. Each layer consists
of multiple neurons that are connected to neurons in adjacent
layers. The relationship between the output yt+1 and the inputs
yt,yt�1,yt�2, . . . ,yt�p+1 has the following mathematical
representation:

ytþ1 ¼ a0 þ
Xq

j¼1

ajg b0j þ
Xp

i¼1

bijyt�iþ1

 !
þ e; ð1Þ

where aj (j = 0,1,2, . . . ,q) and bij (i = 0,1,2, . . . ,p; j = 1,2,3, . . . ,q) are
the model parameters called connection weights, p is the number
of input nodes and q is the number of hidden nodes. The logistic
function is often used as the hidden-layer transfer function, which
is,

gðxÞ ¼ 1
1þ e�x

: ð2Þ

A neural network can be trained by the historical data of a time-
series in order to capture the characteristics of this time-series. The
model parameters (connection weights and node biases) can be ad-
justed iteratively by the process of minimizing the forecasting er-
rors (Liu et al., 1995).

2.2. Adaptive neural network model for forecasting (ADNN)

It is well known that the ANN may suffer either under-fitting or
over-fitting (Moody, 1992; Geman et al., 1992; Bartlett, 1997). A

network that is not sufficiently complex can fail to fully detect
the signal leads to under-fitting. Over-fitting generally occurs
when a model is excessively complex. A model which has been un-
der-fitting or over-fitting will generally have poor predictive per-
formance, as it can exaggerate minor fluctuations in the data. For
these two problems, the over-fitting is more important when the
signal data is sufficient and the network is sufficiently complex.
Thus, in this paper we emphasize on the problem of over-fitting
for the ANN. Generally, the ANN algorithm is said to over-fitting rel-
ative to a simpler one if it is more accurate in fitting known data
(hindsight) but less accurate in predicting new data (foresight).
In order to avoid over-fitting, the adaptive neural network model
is proposed. In this model, the hindsight data is used to modify
the inputs of the ANN in the prediction processing making the in-
puts approach to the learning data. Thus, this algorithm can reduce
the chance of over-fitting. Based on the current ANN, an extension
is done to develop the adaptive neural network (ADNN) model for
time-series forecasting. Firstly, a strategy is used to initialize the
input data yt,yt�1,yt�2, . . . ,yt�m+1, where m is the number of input
nodes. The strategy adopts the adaptive metrics which are similar
to the adaptive k-nearest neighbor method. The data set
yt,yt�1,yt�2, . . . ,yt�m+1 is compared with the other parts of this
time-series, which have the same length. The determination of
the closeness measure is the major factor in prediction accuracy.
Closeness is usually defined in terms of metric distance on the
Euclidean space. The most common choices are the Minkowski
metrics:

LMðYt ;YrÞ ¼ ðjyt � yrj
d þ jyt�1 � yr�1j

d þ � � � þ jyt�mþ1 � yr�mþ1j
dÞ

1
d:

ð3Þ

This equation gives the value difference between Yt and Yr, but
the differences of trends and amplitudes are not presented. In
time-series forecasting, the information on trends and amplitudes
is the crucial factor. In this study, adaptive metrics are introduced
to solve this problem and the arithmetic is presented as:

LAðYt;YrÞ ¼ minkr ;ur frðkr ;urÞ; ð4Þ

frðkr;urÞ ¼ ðjyt � kryr � ur jd þ jyt�1 � kryr�1 � ur jd þ � � �

þ jyt�mþ1 � kryr�mþ1 � urjdÞ
1
d; ð5Þ

where hr and lr are the largest and smallest elements of vector cor-
respondingly, kr 2 1; hr

lr

h i
, ur 2 [0,hr � lr]. The parameter of minimi-

zation kr equilibrates the amplitude difference between Yt and Yr.
The parameter ur is responsible for the trend of time-series.

The optimization problem (4) can be solved by the algorithm of
Levenberg–Marquardt (Press et al., 1992) optimization or other
gradient methods for d P 1. In this study, d is assumed to be 2
and gives the widely used Euclidean metrics.

frðkr;urÞ ¼ ðjyt � kryr � ur j2 þ jyt�1 � kryr�1 � ur j2 þ � � �

þ jyt�mþ1 � kryr�mþ1 � urj2Þ
1
2: ð6Þ

For d = 2, two equations are considered:

@frðkr ;urÞ
@kr

¼ 0;
@frðkr ;urÞ

@ur
¼ 0:

(
ð7Þ

When the corresponding linear system is solved, the solution of the
minimization problem can be obtained analytically:

ur ¼
z1z2 � z3z4

mz2 � z2
3

; kr ¼
mz4 � z1z3

mz2 � z2
3

;

where
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