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a b s t r a c t

We provide a unified model for solving single machine scheduling problems with controllable processing
times in polynomial time using positional penalties. We show how this unified model can be useful in
solving three different groups of scheduling problems. The first group includes four different due date
assignment problems to minimize an objective function which includes costs for earliness, tardiness,
due date assignment, makespan and total resource consumption. The second group includes three differ-
ent due date assignment problems to minimize an objective function which includes the weighted num-
ber of tardy jobs, due date assignment costs, makespan and total resource consumption costs. The third
group includes various scheduling problems which do not involve due date assignment decisions. We
show that each of the problems from the first and the third groups can be reduced to a special case of
our unified model and thus can be solved in Oðn3Þ time. Furthermore, we show how the unified model
can be used repeatedly as a subroutine to solve all problems from the second group in Oðn4Þ time. In addi-
tion, we also show that faster algorithms exist for several special cases.

Crown Copyright � 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

For the majority of deterministic scheduling problems in the lit-
erature, job processing times are considered to be fixed. In various
real-life systems, however, processing times may be controllable
by allocating resources, such as additional money, overtime, en-
ergy, fuel, catalysts, subcontracting, or additional manpower, to
the job operations. In such systems, job scheduling and resource
allocation decisions should be coordinated carefully to achieve
the most efficient system performance.

Janiak [20] described an interesting application of a scheduling
problem with controllable processing times in steel mills, where
batches of ingots have to be preheated before being hot-rolled in
a blooming mill, and both the preheating time and the rolling time
are decreasing functions of the gas flow intensity. Another interest-
ing application arises from scheduling in a machine-tooling envi-
ronment, where the job processing time is a function of the feed
rate and the spindle speed used for each operation (see [42]). Sub-
contracting can also be modeled by controllable processing times
[40], where the compressed portion of the processing time corre-
sponds to the subcontracted part of each job. Due to the large vari-
ety of applications, there is extensive literature on the subject of
scheduling with controllable processing times (e.g., [2,22,16,8,

26,34,35,27]). A survey of results up to 1990 is provided by Now-
icki and Zdrzalka [28] and a more recent one is given by Shabtay
and Steiner [39].

In most of the above-mentioned studies on scheduling with
controllable processing times, it was assumed that the job process-
ing time is a bounded linear function of the amount of resource
allocated to the processing of the job, i.e., the resource consumption
function takes the form

pjðujÞ ¼ pj � ajuj; j ¼ 1; . . . ; n; 0 6 uj 6 uj < pj=aj; ð1Þ

where n is the number of non-preemptive jobs, uj is the amount of
resource allocated to job j;pj is the non-compressed processing time
for job j;uj is the upper bound on the amount of resource that can be
allocated to job j and aj is the positive compression rate of job j.
However, for many resource allocation problems in physical or eco-
nomic systems, a linear resource consumption function has only
limited application, since it fails to reflect the law of diminishing re-
turns. This law states that productivity increases at a decreasing rate
with the amount of resource employed. One class of models reflect-
ing this law (e.g., [25,34,35,41]) uses a convex resource consump-
tion function described by the following equation

pjðujÞ ¼
wj

uj

� �k

; ð2Þ

where wj is a positive parameter that represents the workload of the
processing operation for job j, and k is a positive constant. This
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resource consumption function has been used extensively in con-
tinuous resource allocation (e.g., [25,32,3,4,34,35]). In fact, Monma
et al. [25] pointed out that k ¼ 1 corresponds to many actual gov-
ernment and industrial operations and that the k ¼ 0:5 arises from
VLSI (very large scale integration) circuit design, where the product
of the silicon area (resource) and the square of time spent equals a
constant value (the workload) for an individual job.

There are some studies [9,46], however, which use more general
resource consumption functions, as even Eq. (2) may fail to accu-
rately model the resource consumption for certain applications.
The relationship between the required processing time and the re-
sources employed is more complex in these applications. For
example, the time required to preheat steel ingots to the appropri-
ate temperature before rolling them in a steel mill is a convex,
decreasing (usually exponential) function of the energy (gas flow
intensity) applied [45]. Another example is when the processing
time initially decreases proportionally (linearly) with the amount
of resource allocated to the job, but after a certain point, it becomes
much more expensive to further reduce the job processing time
because it starts to follow the law of diminishing returns. Further-
more, each job may have a different type of resource consumption
function depending on its characteristics (e.g. some linear or linear
in part, others different convex, etc.). Thus, there is also a need to
develop algorithms for solving scheduling problems with convex,
decreasing resource consumption functions which are more gen-
eral than the families described by Eq. (1) or Eq. (2). In this paper,
we present polynomial-time optimization algorithms for many dif-
ferent scheduling problems with general convex, decreasing re-
source consumption functions, which can vary even between or
even within jobs and only have to satisfy the following not very
restrictive properties (we refer by g � conv to the set of functions
satisfying Properties 1–4):

Property 1. Each job’s processing time, pjðujÞ, is a bounded, differ-
entiable function of the amount of resource uj allocated to the job,
where pjðujÞ : Rþ ! Rþ, and uj and uj are the lower and upper
bounds, respectively, for the amount of resource that can be allocated
to job j for j ¼ 1; . . . ;n.

Property 2. Each job’s processing time is a non-increasing function of
the amount of resource allocated to the job, i.e., dpjðujÞ=duj 6 0 for
uj 2 ½uj;uj�. (We will also use the notation p0jðujÞ for the derivative
dpjðujÞ=duj, where convenient.)

Property 3. Each pjðujÞ is convex, i.e., d2pjðujÞ=ðdujÞ2 P 0 for
uj 2 ½uj;uj�.

Property 4. For any y 2 ½p0jðujÞ; p0jðujÞ�, a unique point uj exists such
that p0jðujÞ ¼ y and it can be determined in constant time.

The general problem we study in this paper may be stated as
follows: n independent, non-preemptive jobs, J ¼ f1;2; . . . ;ng, are
available for processing at time zero and are to be processed on a
single machine. Each job processing time, pjðujÞ, is a function of
the resource allocated to the job, uj, where pjðujÞ satisfies Proper-
ties 1–4, and v j is the cost of one unit of resource allocated to job
j. A schedule is defined by a job sequence p ¼ ð½1�; ½2�; . . . ; ½n�Þ and
a resource allocation vector u ¼ ðu1;u2; . . . ;unÞ; where ½j� repre-
sents the job that is in the jth position in p for j ¼ 1;2; . . . ;n.
Our objective is to determine a schedule which minimizes a gen-
eral unified cost function that is the sum of scheduling costs, ex-
pressed by using positional penalties, and the resource
consumption costs. This unified cost function can be formulated
as follows:

Zðp;uÞ ¼
Xn

j¼1

njp½j�ðu½j�Þ þ
Xn

j¼lþ1

w½j� þ
Xn

j¼1

v ½j�u½j� ¼
Xn

j¼1

z½j�ðu½j�Þ; ð3Þ

where nj is a positional, job-independent penalty for any job sched-
uled in the jth position, w½j� is a constant job-dependent penalty for
jobs that are sequenced after the lth position in p (the index l can
always be determined from the more specific form of the schedul-
ing cost), and

z½j�ðu½j�Þ ¼
njp½j�ðu½j�Þ þ v ½j�u½j� for j ¼ 1; . . . ; l;

njp½j�ðu½j�Þ þ w½j� þ v ½j�u½j� for j ¼ lþ 1; . . . ; n;

(

by definition. The term

f ðuÞ ¼
Xn

j¼1

v ½j�u½j� ¼
Xn

j¼1

v juj; ð4Þ

in (3) is the total resource consumption cost, and the rest of the
objective,

gðp;uÞ ¼
Xn

j¼1

njp½j�ðu½j�Þ þ
Xn

j¼lþ1

w½j�; ð5Þ

will be referred to as the scheduling cost.
We will use and extend the standard three field notation AjBjC

introduced by Graham et al. [15] for scheduling problems. The A
field describes the machine environment. For example, if 1 appears
in the A field, it means that we deal with a single machine sched-
uling problem. The B field defines the job processing characteristics
and constraints. We also include in the B field the information
needed about the type of resource consumption function. For
example, if lin appears in this field, it means that a linear resource
consumption function given by Eq. (1) is assumed, conv means that
we use Eq. (2) for describing the resource consumption function,
and g–conv means that we assume a general convex resource con-
sumption function that only has to satisfy Properties 1–4. The C
field contains the optimizing criteria (for ease of presentation,
shown in a symbolic fashion without including the summation
indices, for example,

Pn
j¼lþ1w½j� is replaced by

P
w½j�).

The paper is organized as follows. In Section 2, we present an
Oðn3Þ optimization algorithm to determine the optimal schedule
for the 1jg—convj

P
njp½j� þ

P
w½j� þ

P
v ½j�u½j� unified problem. In

the next section, we present two groups of scheduling problems
which involve due date assignment and resource allocation deci-
sions. In the first group, the objective function includes costs for
earliness, tardiness, makespan, due date assignment and resource
allocation. We show that, for four different due date assignment
methods, the objective can be reformulated as a special case of
(3), which enables us to solve this set of problems in Oðn3Þ time.
The second group contains three problems involving due date
assignment and resource allocation decisions in which the objec-
tive function includes costs for the number of tardy jobs, make-
span, due date assignment and resource allocation. We show
how we can solve this set of problems by solving at most n prob-
lems with an objective that is again a special case of (3). This yields
an Oðn4Þ time solution for this set of problems. In addition, we
show how the complexity can be reduced from Oðn4Þ to OðnÞ for
two of the due date assignment methods. In Section 4, we show
how the unified approach can be used to solve some additional
classical scheduling problems with controllable processing times.
These include minimizing the makespan, the sum of completion
times, the variation of job completion times and the variation of
waiting times with controllable processing times. The last section
contains a summary and our concluding remarks.

2. The unified problem

In the following crucial lemma, we present the optimal resource
allocations as a function of the assignment of jobs to positions in
the sequence. It is important to emphasize that the lemma allows
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