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a b s t r a c t

Pre-processing operations that reduce the size of a problem may be decisive for solving or not solving
practical instances of a NP-hard problem. In this article we review some properties suggested in the lit-
erature for the minimization of open stacks problem that can be used in pre-processing operations to
reduce the instances sizes. We also present a new pre-processing technique that may be very effective
in reducing the size of an instance. We present computational tests with the suggested pre-processing
operations applied on sets of MOSP instances of the literature and we show that the reductions obtained
can be significant.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Cutting stock problems arise in many productive settings, like
in the paper, the furniture, the steel, the wooden hardboard indus-
tries. The problem consists in cutting smaller pieces (denoted
items), with fixed dimensions and quantities, from larger pieces
(denoted objects), with some optimization criterion, for example,
maximizing profits or minimizing trim loss. A solution of a cutting
stock problem is composed of a set of cutting patterns and their
corresponding frequencies, that is, the number of times the pat-
terns have to be cut in order to fulfill the demands of the desired
items.

When cutting the patterns, the items cut are piled up in stacks,
one stack for each item type. A stack is open the first time an item
type is cut and it remains open until the last piece of the corre-
sponding item type is cut. When the last piece is cut, the stack is
closed. It is desirable to maintain a reduced number of open stacks
during the cutting process because if the number of stacks in-
creases beyond the available space, stacks must be removed in or-
der to give space to the new stacks. Closed stacks can be removed
definitively to another place or can be delivered to clients but, open
stacks, if removed, must be brought back later to be completed
when the corresponding item type is cut again in another pattern.
This is not efficient and consumes time and resources. Therefore,
there is an interest in determining a sequence to cut the patterns

that minimizes the maximum number of open stacks during the
cutting process. This sequencing problem is known as the minimi-
zation of open stacks problem (MOSP).

Formally we can define MOSP as follows: given a Boolean ma-
trix C in which the columns correspond to the patterns and each
row corresponds to the item types, the entry cij is equal to 1 if
and only if item i is contained in pattern j (the number of items i
in pattern j is not relevant). Consider Cp, the resulting matrix ob-
tained by a permutation p of the columns of C and let C1

p be the
corresponding matrix obtained from Cp that has the consecutive
1’s properties, that is, in any row of this matrix, all elements be-
tween two elements 1 is also 1. The objective is to find a permuta-
tion p of the columns, such that the maximum number of 1’s in any
column of matrix C1

p is minimized.
Recently, MOSP was focused in the Constraint Modeling Chal-

lenge 2005 (see Smith and Gent, 2005) in the Fifth Workshop on
Modelling and Solving Problems with Constraints. This challenge
increased the interest on the MOSP by the Operations Research sci-
entific community.

The literature on the MOSP is not extensive. Lins (1989) consid-
ered a particular case of MOSP where there are at most 2 different
item types per pattern. Considering these simple patterns he built
a graph associating nodes to items and arcs to patterns and ob-
tained 1-tree graphs (i.e., a tree with an additional arc) for his prac-
tical instances. He proposed a heuristic method to solve these
instances. Yuen (1991, 1995) presented six simple heuristics for
MOSP. The first two heuristics use two steps, in the first, an open
item is selected and in the second a pattern that contains the se-
lected item is sequenced. In the other four heuristics the selection
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of the next pattern to sequence is based on a measure of ‘‘match-
ing” between a pattern and the current open items. Yuen’s heuris-
tic number 3 was considered the most efficient by the
computational tests performed by the author. Yuen and Richardson
(1995) presented a trivial lower bound for MOSP given by the max-
imum number of different item types in the patterns. They pro-
posed the decomposition of the problem by identifying clusters
of patterns (see pre-processing 1, reviewed in Section 2) and an ex-
act method that enumerates permutations of pattern sequences.
Upper bounds given by the heuristics proposed in Yuen (1991,
1995) and the new lower bound proposed are used to reduce the
search space. Yanasse (1996) proposed polynomial algorithms for
the 1-tree case and other graphs with very special topologies. Yan-
asse (1997a) presented an exact polynomial algorithm for the tree
case. Yanasse (1997b) propose a non-trivial mathematical formula-
tion for MOSP, a branch and bound algorithm and a greedy heuris-
tic algorithm. He also presents relations of the MOSP with the
Minimization of Order Spread Problem (see Garey et al., 1978;
Madsen, 1988), and the minimization of the number of tool
switches problem (see Tang and Denardo, 1988). Limeira (1998)
and Yanasse and Limeira (1998, 2004) integrated some polynomial
algorithms developed to solve special classes of instances of MOSP
with the branch-and-bound algorithm proposed by Yanasse
(1997b). Yanasse et al. (1998) proposed a polynomial algorithm
to solve another special instance of MOSP, where the MOSP graph
is a complete graph with tree subgraphs attached to its nodes. Yan-
asse (1997c) showed that any instance of MOSP, not only those
with at most two item types per pattern as in Lins (1989), can be
modeled as a graph problem. The MOSP graph is obtained as fol-
lows. Each node in the graph corresponds to an item type and there
is an arc connecting two nodes if and only if there is at least one
pattern containing both items types corresponding to the nodes.
Therefore, a pattern with k item types is represented by a clique
of size k in the MOSP graph. Observe that the MOSP graph is a un-
ion of cliques and it is completely different from the pattern graph
connection suggested in Yuen and Richardson (1995). Yanasse
(1997c) defined the MOSP as a graph problem as the problem of
traversing the arcs of the graph such that the number of simulta-
neously open nodes is minimized. A node is considered closed
when all the arcs incident to it are traversed, a node is considered
open after the first arc incident to it is traversed. Yanasse (1997c)
showed then that any MOSP instances that produce the same
MOSP graph are solution-wise equivalent. In addition, since any
MOSP graph can be generated by an instance of MOSP where all
patterns have at most two item types, solving this particular class
of MOSP instances is computationally not easier than solving any
other instance of MOSP. Yanasse (1997c) also introduced two
new lower bounds for MOSP given by the size of the maximal cli-
que of the MOSP graph and the smallest degree of any node in the
MOSP graph. He also showed that the maximum number of open
stacks following a given sequence of patterns and its reverse se-
quence is the same; any MOSP having more than one pattern to se-
quence has multiple optimal solutions; given two instances 1 and 2
of MOSP, if 1 has a subset of the patterns of 2, then the optimal va-
lue of instance 2 is greater or equal to the optimal value of instance
1. With this last result, lower bounds for an instance of MOSP can
be obtained by solving smaller MOSP instances, for instance, lower
bounds can be obtained using subgraphs of the original MOSP
graph. Yanasse (1997c) also showed how to obtain an optimal
solution to the original problem given an optimal solution of the
MOSP as a graph problem. The solution is obtained by observing,
just after each arc is traversed, all the open nodes. Following the
optimal sequence to traverse the arcs, the first time that all nodes
(items) of a pattern of the original problem are open or closed, that
pattern is sequenced. The pseudo-code of this algorithm is pre-
sented next.

Algorithm to determine an optimal solution of the original problem
given an optimal solution of the MOSP graph problem

INPUT: Patterns of the original problem; Optimal sequence to
traverse the arcs of the MOSP graph.
OUTPUT: Corresponding optimal sequence of the patterns.
1. S = the set of original patterns; L(arcs) = ordered list of arcs of

the MOSP graph to traverse; L (patterns) = empty; OPEN =
empty; CLOSED = empty.

2. While S is not empty do:
2.1. Get next arc of L(arcs);
2.2. Update OPEN with the open nodes and CLOSED with

the closed nodes;
2.3. Check for all patterns in S that have all their item types

in set OPEN or in set CLOSED. If any, include the pattern
in L(patterns) and delete it from S.

Endwhile;
3. Return L(patterns).

The computational complexity of this algorithm is O(m2nlogm),
where m is the total number of item types and n is total number of
patterns.

Faggioli and Bentivoglio (1998) presented a mathematical mod-
el for MOSP and a three phase solution method. In the first phase, a
good solution is obtained with a greedy heuristic similar to some of
Yuen’s (1995) heuristics. In the second phase this solution is im-
proved using tabu search; and in the third phase, an implicit enu-
meration scheme of permutation of patterns is used that is just an
improved procedure of Yuen and Richardson (1995). Faggioli and
Bentivoglio (1998) ignore the dominated patterns in the enumera-
tion since this does not lose the optimal solution. This is, in fact, the
pre-processing operation suggested in Becceneri (1999) and in
Becceneri et al. (2004) that is reviewed later in Section 2 of this
manuscript, pre-processing 2.

In Yanasse et al. (1997, 1999) and Becceneri (1999), an arc con-
traction heuristic is presented. This arc contraction operation is
also used to develop a new lower bound to the optimal value of
MOSP in Yanasse et al. (1999). To the best of our knowledge, this
arc contraction lower bound dominates all previous lower bounds
proposed in the literature. In Becceneri (1999), the least cost node
heuristic for MOSP was proposed and it was later modified in Bec-
ceneri et al. (2004). In this heuristic, the next arcs of the MOSP
graph to be traversed are chosen by closing the node with the least
number of arcs incident to it. To the best of our knowledge, the per-
formance of this heuristic, in terms of the quality of the solution, is
the best or among the best of the literature. Ashikaga (2001) pre-
sented two new heuristics for solving the MOSP. In the first he
searches for Hamiltonian circuits and for that, he uses a variation
of the extension–rotation algorithm of Pósa (1976). This algorithm
starts with a path with a single node and tries to extend it as far as
possible. Ashikaga’s (2001) variation consisted in choosing the set
of nodes of the maximal clique of the MOSP graph, instead of a sin-
gle node and to restrict the extensions. The maximal clique is
determined by a greedy search for the minimum grade vertex of
the complementary MOSP graph. The second heuristic proposed
by Ashikaga (2001), uses a recursive contraction of maximal cli-
ques until a single hyper-node is obtained. By the computational
tests performed, Ashikaga’s first heuristic was better than Yuen’s
heuristic 3, in terms of quality of solution obtained and smaller
execution times. Meta-heuristics were also suggested for solving
the MOSP. Linhares et al. (1999) developed a simulated annealing
heuristic, Fink and Voss (1999) used simulated annealing and tabu
search, Oliveira and Lorena (2002a,b) used a constructive genetic
algorithm. It is worth observing that Linhares (2001) and Oliveira
and Lorena (2002a) reported better solutions for some data set of
instances compared to the solutions presented by Faggioli and
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