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a b s t r a c t

Kernel Fisher discriminant analysis (KFDA) is a popular classification technique which requires the user
to predefine an appropriate kernel. Since the performance of KFDA depends on the choice of the kernel,
the problem of kernel selection becomes very important. In this paper we treat the kernel selection prob-
lem as an optimization problem over the convex set of finitely many basic kernels, and formulate it as a
second order cone programming (SOCP) problem. This formulation seems to be promising because the
resulting SOCP can be efficiently solved by employing interior point methods. The efficacy of the optimal
kernel, selected from a given convex set of basic kernels, is demonstrated on UCI machine learning bench-
mark datasets.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Kernel based methods have proved to be a powerful tool for
solving classification problems. Recently, kernel Fisher discrimi-
nant analysis (KFDA) has received much attention in the literature
(Mika et al., 1999, 2001; Yang et al., 2005). Kernel Fisher discrim-
inant analysis requires the factorization of the Gram matrix into
a within-class and a between-class scatter matrices, that are com-
puted by using given training samples. The KFDA is computation-
ally very simple, but its classification performance depends very
much on the choice of the kernel function.

Generally, kernels are chosen by predefining a kernel model
(Gaussian, polynomial, etc.), and adjusting the kernel parameters
by a tuning procedure. The classifier’s performance on a subset of
the training data, commonly referred to as the validation set, is
the main criterion for selection of the kernel. This kernel selection
procedure can be computationally very expensive.

Support Vector Machines (SVMs) are powerful tools for
classification problems. They have emerged from a research in
statistical learning theory on how to regulate generalization in
learning, and choose a tradeoff between structural complexity

and empirical risk. SVMs classify points by assigning them to one
of two disjoint half spaces, either in the pattern space or in a high-
er-dimensional feature space.

One of the most popular SVM classifiers is the ‘‘maximum
margin” one, which aims at minimizing an upper bound on the
generalization error through maximizing the margin between
two parallel planes (Burges, 1998; Cortes et al., 1995; Vapnik,
1995) which are at a unit distance from the maximum margin clas-
sifier. Determining the classifier requires the minimization of a
quadratic function subject to linear inequality constraints, which
is a convex programming task. Working on the lines of SVMs, Mika
et al. (2001) gave an alternative formulation of KFDA which also
minimizes a convex quadratic function subject to linear inequality
constraints.

In recent years, several authors (Bach et al., 2004; Bennett et al.,
2002; Hamers et al., 2003; Lanckriet et al., 2004; Yang et al., 2005)
have proposed the use of a non-negative linear combination of ker-
nels formed by a family of different kernel functions and parame-
ters. Here, the aim is to find an ‘‘optimal” linear combination of
kernel functions chosen from the kernel family. Using this ap-
proach, the final kernel is constructed according to the specific
classification problem to be solved, without sacrificing generaliza-
tion performance, thereby avoiding the need to predefine a kernel.
Thus, by combining kernels optimally and with appropriate regu-
larization, the prediction accuracy is improved, which is the ulti-
mate goal of classification.
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In recent work on optimal kernel selection, Fung et al. (2004)
have developed an iterative method based on a quadratic program-
ming formulation of the Fisher discriminant analysis given by Mika
et al. (2001). Kim et al. (2006) have shown that the optimal kernel
selection problem in KFDA can be reformulated as a semidefinite
programming problem (SDP), which can be solved using interior
point methods.

In this paper, we consider the problem of finding the data-
dependent ‘‘optimal” kernel function via second order cone pro-
gramming (SOCP). Taking motivation from Lanckriet et al.
(2004), we define a generalized performance measure for the
quadratic programming formulation of KFDA. We then formulate
the kernel selection problem as a convex optimization problem
over the cone of positive semidefinite matrices. The main contri-
bution of the present work is to show that the latter problem can
also be reformulated as a second order cone programming prob-
lem, which can be solved efficiently by employing interior point
algorithms.

The paper is organized as follows: In Section 2 we summarize
linear discriminant analysis and its kernel version. Section 3 briefly
discusses some recent developments in the field of optimal kernel
selection for KFDA. In Section 4, by introducing the generalized
performance measure for KFDA, we propose a SOCP formulation
for finding an optimal kernel over the set of positive semidefinite
matrices. Experimental results are given in Section 5, while Section
6 is devoted to concluding remarks.

2. Linear discriminant analysis

Linear Fisher discriminant analysis (LFD) is a classification
method that projects n-dimensional data onto a line, and performs
classification in this one dimensional space. The projection is cho-
sen so as to maximize the between-class mean, and minimize the
within-class variance.

Let the patterns to be classified be denoted by a set of k vectors
X ¼ ½x1; x2; . . . ; xk� in the n-dimensional real space Rn, and let
yi 2 f1;�1g denote the class to which the ith pattern belongs. Let
X1 ¼ ½x1

1; x
1
2; . . . ; x1

k1
� and X2 ¼ ½x2

1; x
2
2; . . . ; x2

k2
�; ðk ¼ k1 þ k2Þ, be sam-

ples from two different classes with class labels +1 and -1. Then
the Fisher’s linear discriminant is given by the vector z 2 Rn that
maximizes the Fisher discriminant ratio (FDR)

JðzÞ ¼ zT SBz
zT SW z

; ð1Þ

where SW is the within-class scatter matrix and SB is the between-
class scatter matrix. The matrices SW and SB are given by

SB ¼ ðm1 �m2Þðm1 �m2ÞT ; ð2Þ

SW ¼
X2

i¼1

X
x2Xi

ðx�miÞðx�miÞT ; ð3Þ

where mi ¼
1
ki

Xki

l¼1

xi
l; i ¼ 1;2: ð4Þ

The intuition behind LFD is to find the direction that maximizes the
projected class mean, while minimizing the class variance in this
direction. Thus, the classifier is less prone to overfitting, and is
therefore preferred over other complex classifiers.

To obtain the nonlinear version of the Fisher discriminant ratio,
a nonlinear mapping / : Rn ! H is considered, where H is some
high dimensional feature space. Then the kernel Fisher discrimi-
nant u in H is obtained by maximizing

JðuÞ ¼ uT S/
B u

uT S/
W u

; ð5Þ

where the within-class scatter matrix S/
W and the between-class

scatter matrix S/
B are given by

S/
B ¼ ðm

/
1 �m/

2 Þðm
/
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2 Þ
T
; ð6Þ

S/
W ¼

X2
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ð/ðxÞ �m/
i Þð/ðxÞ �m/

i Þ
T
; ð7Þ

with m/
i ¼

1
ki

Xki

l¼1

/ðxlÞi; i ¼ 1;2: ð8Þ

Mika et al. (2001) have recently shown that the above problem can
be reformulated as the following quadratic programming problem:

ðKFSVMÞ Min
u;b;q

C
2
kqk2 þ 1

2
ðuT uþ b2Þ

subject to KðX;XTÞu� beþ q ¼ y;
ð9Þ

where q 2 Rk; u 2 Rk; b 2 R; e is a vector of ones of appropriate
dimension; C P 0 is a parameter; y ¼ ½y1; y2; . . . ; yk� where,
yi ¼ 1ifxi 2 X1 and yi ¼ �1ifxi 2 X2, and KðX;XTÞ ¼ ðkijÞ is called
the kernel matrix with kij ¼ /ðxiÞT/ðxjÞ.

Once the optimal u and b are obtained, the class label of a new
pattern x 2 Rk (Vapnik, 1995) is decided as follows:

x 2
class 1; if Kðx;XTÞu� b

� �
> 0

class � 1; if Kðx;XTÞu� b
� �

6 0:

8>><
>>: ð10Þ

3. Some recent work on optimal kernel selection for KFDA

In this section, we give a very brief description of some of the
recent work on optimal kernel selection for KFDA. In the literature,
KFDA has been discussed with respect to a given kernel only, e.g. a
Gaussian, a polynomial, etc. In Fung et al. (2004), it has been pro-
posed that the kernel matrix KF be taken as a non-negative linear
combination of p given kernel matrices Kj; ðj ¼ 1; . . . ; pÞ, i.e.,
KF ¼

Pp
j¼1bjKj, where bj P 0; ðj ¼ 1;2; . . . ; pÞ. We have used the

notation KF to denote the optimal kernel obtained by using Fung
et al.’s procedure.

The set fK1;K2; . . . ;Kpg of given p kernel matrices could be
viewed as a predefined set of p initial guesses of kernel matrices.
As pointed out in Lanckriet et al. (2004), these kernels can be lin-
ear, Gaussian, polynomial, or all Gaussians with different hyper
parameters.

Fung et al. (2004) developed an iterative method, termed as A-
KFD, for selection of the optimal combination of kernels. The for-
mulation of Fung et al. (2004) involves solving the following two
optimization problems iteratively

min
u;b

C
2
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�����

2

þ 1
2
ðuT uþ b2Þ ð11Þ

and

min
bP0

C
2
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2

þ 1
2
ðbTbÞ; ð12Þ

where, C; e and other symbols are as defined in the previous section.
This method alternates between the problem of optimizing the
decision vector ðu; bÞ and the coefficients bj P 0; ðj ¼ 1;2; . . . ; pÞ.
The first optimization problem deals with the optimization of u
and b for a fixed b and the other deals with the optimization of b
for fixed u and b as obtained from the first problem. Problems
(11) and (12) are solved iteratively up to some predefined maximal
number of iterations, or when there is a sufficiently small change in
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