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1. Introduction

In the 1[rj]37;04E; + f;T; scheduling problem, a set J of n jobs has to be scheduled without preemption on a single processor, which is able
to handle only one job at a time. Each job j € J is given an integer processing time p;, a release date rj, a due date d;, and two positive pen-
alties o;; and f3;. The earliness (resp. tardiness) of job j is defined as E; = max(d; — Cj, 0) (resp. T; = max(C; — d;, 0)), where C; denotes the com-
pletion time of j, and a cost o;E; + f;T; is incurred if the completion time of j is different from its due date.

Reviews about this problem and variants can be found in Baker and Scudder (1990) or Kanet et al. (2000). Since its special case 1(|>,w;T;
is NP-hard in the strong sense (Lenstra et al., 1977), this problem is clearly NP-hard. A few polynomial special cases exist, most of them
involving a common due date. Hassin and Shani (2005) gather algorithms for solving some of these problems.

Kedad-Sidhoum et al. (2008) present a computational study of lower bounds for the general case, in which one can notice the excellent
quality of time-indexed based bounds.

An interesting property of the problem has been exploited in many exact as well as heuristic approaches: solving the problem with re-
spect to a fixed sequence of jobs (timing problem) can be done polynomially (see, e.g. Hendel and Sourd, 2007). Thus, an important part of
the computational effort can be focused on searching for a good or optimal sequence.

Solving exactly 1|rj|3>_;04E; + ;T; appears to be difficult, even for small instances, and much work has been devoted to special cases or
heuristic methods (Fry et al., 1987; Lee and Choi, 1995; Biilbiil et al., 2007).

Exact approaches able to solve instances without release dates and with up to 30 jobs were proposed by Tanaka et al. (2003) and Sourd
and Kedad-Sidhoum (2003). More recently, Sourd and Kedad-Sidhoum (2008) present a branch-and-bound algorithm based on a Lagrang-
ian relaxation of resource constraints in the time-indexed formulation (Sousa, 1989) with new dominance rules that can solve most in-
stances with 50 jobs. Yau et al. (2006) develop an hybrid Dynamic Programming - branch-and-bound method, relying on an
assignment-based lower bound, allowing to solve instances with up to 50 jobs. Two very recent papers deal successfully with the presence
of release dates: Sourd (in press) uses a Lagrangian relaxation of the number of occurrences in the time-indexed formulation and reinforc-
ing valid inequalities to deal successfully with instances with up to 60 jobs. Tanaka and Fujikama (2008) develop a Successive Sublimation
Dynamic Programming scheme to handle general single machine problems that can solve optimally all of the instances of the literature of
1ri35;04E; + B;T; with up to 200 jobs.
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This paper aims to present new and original elimination rules for this problem. It is organized as follows. In Section 2 we state a 0-1
time-indexed formulation of the problem, and we present a lower bound based on a Lagrangian decomposition. Next, we describe new
elimination rules exploiting this decomposition (Section 3). Section 4 is devoted to a branch-and-bound exploiting these results and
two Lagrangian upper bounds. Computational experiments are reported in the last section, followed by a conclusion.

2. Lower bound
2.1. Time-indexed formulation

Our elimination rules rely on the computation of a lower bound based on a Lagrangian decomposition over the following 0-1 time-in-
dexed formulation. Let us introduce the notations used in the sequel:

T ={0,...,7}: scheduling horizon. We can set 7 = max; max(rj, d;) + >_,p;-

P =3",,p;: sum of the processing times.

Vj € ], ect; (resp. Ict;): earliest (resp. latest) possible completion time possible for job j.
Vj € J,Dj = {ectj,...,Ict;}: completion time window for job j.

Vj € ],Vt € Dj, ¢ = max(o; - (d; — t), f; - (t — d;)): cost incurred if job j completes at time t.

e Vje) VteD,VoeT,d = { (1) :)ftl(ieerm{/gs; Pyt =1} : indicates if job j is in processing at time 0 if it completes at time t.

Our problem can be formulated as a time-indexed integer program, where a decision variable x; is equal to 1 if job j completes at time
instant t, O otherwise; y, is equal to 1 if a task is processed at time instant 0

[ETTIS”] min > Y ¢ X

je] teD;
st. Y =1 Vjel, (1)

teD;
SN dxie<y, VOeT, 2)
je teb;
ZYU =P, 3)
0T

xp €{0,1} Vje]J, VteDj, (4)
¥,€1{0,1} VoeT. (5)

Constraint (1) ensures that at most one occurrence of each job is processed in any feasible schedule, while constraints (2) and (3) prevent
from processing more than one job simultaneously. The use of the surrogate (3) allows the design of the elimination rule described in Prop-
osition 5.

2.2. Lagrangian decomposition

Let v = (vo,...,v;) = 0 denote Lagrangian multipliers associated with the 7 + 1 coupling constraints, we price out (2) to form the
Lagrangian dual function:

LD(U) = min Z Z (Cjt + i T/()) - Xjt — Z VoY

jel teD; 0=t—p; 0eT

st. (HAB)AMA)A(5).
It follows that the dual problem [DP] consists in finding a vector of Lagrangian multipliers »* maximizing L”():

[DP] = max L°(v).

veRTT

The resulting value provides us with a lower bound.

2.3. Solving the dual problem

Clearly, computing L”(2) for any vector of Lagrangian multipliers » leads to n + 1 independent subproblems. Indeed, one can write
D.
L°(v) = > SPJ(v) - SP) (v).
Jjel
Gjt = Gjt + Zf;;lt,pj vy noting the reduced cost of variable x;;, the subproblem associated with each job j can be described by
SPY(v) =min G X
teD;

s.t. ijt =1,

teD;

Xt € {0,1} VteD;.
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