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a b s t r a c t

The classical Wardrop System Optimum assignment model assumes that the users will cooperate with
each other in order to minimize the overall travel costs. The importance of the system optimum model
lies on its well-recognized ability of producing solutions that correspond to the most efficient way of
using the scarce resources represented by the street and road capacities. In this paper, we present a ver-
sion of the system optimum model in which the travel costs incurred on each path come from M=G=c=c
state-dependent queueing networks, a stochastic travel time estimation formula which takes into
account congestion effects. A Differential Evolution algorithm is proposed to solve the model. We moti-
vate this version of the problem in several ways and computational results show that the proposed
approach is efficient.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

There have been successful attempts in the literature to model
how users select their route in a congested network (for instance,
see Helbing et al., 2005 and references therein). Two major streams
of work can be distinguished: the system optimum (SO) models
versus the User Equilibrium (UE) models.

The User Equilibrium model, assuming perfect knowledge of the
travel costs, states that drivers will choose the best route according
to Wardrop’s first principle. This principle is equivalent to a mixed-
strategy Nash equilibrium of an n-player, non-cooperative game
(Bell and Cassir, 2002). The Deterministic User Equilibrium (UE)
is an important classical traffic assignment model approach (Sheffi,
1985), which even recently keeps receiving improvements (see, for
instance, the recent paper by Watling (2006)). In equilibrium,
routes carrying a positive flow will have equal travel costs. The dis-
advantage of the User Equilibrium model is that the scarce re-
sources (street and road capacity) may be used in an inefficient
way (Helbing et al., 2005).

In contrast, the classical Wardrop System Optimum (SO) assign-
ment model, assumes that all users are able to cooperate with each
other in order to minimize the overall system-wide travel costs

(Sheffi, 1985). Even though the system optimum (SO) assignment
model is based on a rather non-realistic behavioral assumption,
we argue that its solution may be seen as a result of a well-suc-
ceeded control action on the transportation network, such as, for
instance, by route inducement (Moreno-Quintero, 2006). In other
words, signal timings may be re-optimized and alternative routes
may be re-defined in response to an increase in demand. It is well
known that traffic lights and adaptive routing can improve the flow
(Poli et al., 2005), depending on the traffic densities (e.g. using
DRIPS, Dynamic Routing Information Panel Systems). Next to this,
several paradoxes show the deficiency of the UE optimum com-
pared to the SO model. For example, Braess’s paradox shows that
adding extra capacity to a network, when people selfishly choose
their own route, can reduce overall performance (Braess, 1968;
Braess et al., 2005). A similar result has been observed by Sheffi
and Daganzo (1978). On the other hand, Charnes and Klingman
(1971) showed that both increasing supply and demand could
counter-intuitively lead to a reduction in total costs. In any case,
both paradoxes show that transport planners should not trust in
the users’ selfish actions when optimizing the traffic network. As
such, these paradoxes enforce the necessity of the system optimum
(SO) assignment model.

One major problem in the above models is that the travel times
are usually assumed to be either deterministic or approximate sto-
chastic models. Typically, the SO models express the travel costs in
terms of deterministic travel time functions (Prashker and Bekhor,
2000), yet these times are known to be rather variable between
trips, within and between days. The relevant travel time models
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are usually built on the classical formulas that have been con-
structed over the past 40 years. For instance, the well-known BPR
(Bureau of Public Roads, 1964) was developed in 1964 using data
from the Highway Capacity Manual.

Kimber and Hollis (1979) developed another travel time for-
mula based upon an approximation to the time-dependent
M=G=1=1 model. Since analytical expressions for the transient
M=G=1=1model are intractable, they developed an approximation
based upon a coordinate transformation technique to adjust the
steady-state formula to account for the transient effects of the
queue. In their approach, they can account for existing traffic on
the highway link, but they fix the service rate of the traffic link
l, the queue is infinite in capacity, and there is only one server
for the traffic. Subsequently Akçelik (1991) extended the work of
Kimber and Hollis with formulas based upon the coordinate trans-
formation technique that are recognized as efficient to model the
travel times, especially under congestion during rush hours, when
the demand far exceeds capacity (Ceylan and Bell, 2005). The per-
formance of Akçelik’s model is similar to Kimber and Hollis. Under
these ‘typical’ link performance functions, good solution methods
are well known. We will argue that another stochastic approach
is more powerful based on state-dependent queues because it
can also handle general service times, multiple servers, and has
transient as well as steady-state solutions. It is a true stochastic ap-
proach with no approximations. Fig. 1 presents results from many
empirical studies for North American roads (Drake et al., 1967;
Edie, 1961; Greenshields, 1935; Transportation Research Board,
2000; Underwood, 1961). Obviously congestion may be perceived
as a decrease in the mean speed when the vehicular density in-
creases, resulting in the well-known speed-flow-density curves
(see e.g. the seminal work by Greenshields (1935), on this).

In particular, we introduce a stochastic version of the SO model
in which the costs incurred on each path come from M=G=c=c
state-dependent queueing networks. This latter model is a stochas-
tic travel time estimation formula that takes into account these
important congestion effects. The M=G=c=c state-dependent
queueing models originated with the work of Yuhaski and Smith
(1989) for pedestrian traffic flows. This paper formed the founda-
tion of all the subsequent models used in this approach to the tra-
vel time flow modeling problem. Following this were the papers of
Cheah and Smith (1994) which generalized the process and
showed that the state-dependent queue was quasi-reversible and
Jain and Smith (1997) which showed how the state-dependent
queues could be used for modeling vehicular congestion. In Section

3.1.2, we will describe in detail the elaboration of the M=G=c=c
state-dependent queueing model. For a review on the use of
queueing models to model traffic flows and congestion, the reader
is referred to the paper by van Woensel and Vandaele (2007). An-
other successful attempt to refine the travel time estimation may
be found in the paper by García-Ródenas et al. (2006).

Fig. 2 shows typical travel time functions (recently used, for in-
stance, by Ghatee and Hashemi (2009) and Pursals and Garzón
(2009)) in comparison with the M=G=c=c state-dependent queue-
ing model functions (Jain and Smith, 1997), for a 1-mile long free-
way, with free-flow speed 62.5 miles per hour (100 kilometer/
hour), and capacity 2400 veh/hour, based on the Highway Capacity
Manual (Transportation Research Board, 2000). In addition, Fig. 3
shows how the travel time functions behave as a function of the ar-
rival rate for several single links admitting an M=G=c=c state-
dependent queue to model the road traffic. Note that under low
traffic, the queueing approach is close to classical and accurate for-
mulas, such as BPR and Akçelik’s, as seen in Fig. 2.

Important to note from Figs. 2 and 3 is that the M=G=c=c travel
time function is not convex but S-shaped, which will produce
many local optima. Consequently, the introduction of these sto-
chastic M=G=c=c state-dependent models will make the SO prob-
lem computationally more challenging as multiple solutions may
be present. The Frank–Wolfe algorithm is a convex combination
algorithm (Frank and Wolfe, 1956) that has been often used for
determining the equilibrium flows in transportation networks.
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Fig. 1. Empirical distributions for vehicular traffic flows (Drake et al., 1967; Edie,
1961; Greenshields, 1935; Transportation Research Board, 2000; Underwood, 1961)
and M=G=c=c state-dependent models (Jain and Smith, 1997).
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Fig. 2. One-mile vehicular traffic flows.
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Fig. 3. Travel time under M=G=c=c state-dependent models.
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