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a b s t r a c t

Installment options are path-dependent contingent claims in which the premium is paid discretely or con-
tinuously in installments, instead of paying a lump sum at the time of purchase. This paper deals with val-
uing European continuous-installment options written on dividend-paying assets in the standard Black–
Scholes–Merton framework. The valuation of installment options can be formulated as a free boundary
problem, due to the flexibility of continuing or stopping to pay installments. On the basis of a PDE for
the initial premium, we derive an integral representation for the initial premium, being expressed as a dif-
ference of the corresponding European vanilla value and the expected present value of installment pay-
ments along the optimal stopping boundary. Applying the Laplace transform approach to this PDE, we
obtain explicit Laplace transforms of the initial premium as well as its Greeks, which include the trans-
formed stopping boundary in a closed form. Abelian theorems of Laplace transforms enable us to character-
ize asymptotic behaviors of the stopping boundary close and at infinite time to expiry. We show that
numerical inversion of these Laplace transforms works well for computing both the option value and the
optimal stopping boundary.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Installment options or pay-as-you-go options are path-depen-
dent claims in which a small amount of up-front premium instead
of a lump sum is paid at the time of purchase, and then a sequence
of installments are paid up to a fixed maturity. The holder has the
right of stopping payments at any time, thereby terminating the
option contract: If the option is not worth the net present value
(NPV) of the remaining payments, she/he does not have to con-
tinue to pay further installments. Hence, an optimal stopping prob-
lem arises for the installment option even in European style. The
option can be exercised only if all installments are paid until matu-
rity. Due to the additional right to terminate payments, the total
premium charged for an installment option is greater than that
for a standard option. An installment option with payments at
pre-specified dates is usually referred to as a discrete-installment
option, whereas its continuous-time limit in which premium is
paid at a certain rate per unit time is referred to as a continuous-
installment option. This paper deals with a European-style contin-
uous-installment option.

In actual markets, installment options have been traded ac-
tively, e.g., installment warrants on Australian stocks listed on
the Australian stock exchange (ASX) (Ben-Ameur et al., 2005,

2006), a 10-year warrant with 9 annual payments offered by Deut-
sche Bank (Davis et al., 2001) and so on. Also, many life insurance
contracts and capital investment projects can be thought of as
installment options. For example, Majd and Pindyck (1987) devel-
oped a model for optimal sequential investment, in which a firm
invests continuously until the project is completed, investment
can be stopped and later restarted without paying any additional
costs. Their model can be considered as a European-style continu-
ous-installment option where the remaining expenditure required
to complete the project is used as a state variable instead of time;
see also Dixit and Pindyck (1994, Chapter 10). However, there have
been relatively few studies on installment options: For European-
style discrete-installment options, the case of two installments is
the compound option, which is an option written on an option;
see Geske (1977, 1979). Davis et al. (2001, 2002) applied the con-
cept of compound options and NPV to obtain no-arbitrage bounds
of the initial call premium in the (possibly more general) Black–
Scholes–Merton framework (Black and Scholes, 1973; Merton,
1973), and then to examine dynamic and static hedging strategies.
They intuitively showed that holding an installment call option is
equivalent to holding an associated European call option with
the same payoff plus the right to sell this option at any installment
date at a price equal to the NPV of all future installments. The latter
can be understood as an American compound put option written
on the vanilla call option, where all the maturity dates are same.
Griebsch et al. (2007) proved this intuitive idea on premium
decomposition to be correct; see also Wystup et al. (2004). For
American-style discrete-installment options, Ben-Ameur et al.
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(2006) developed a DP algorithm for computing the option value
approximated by a piecewise-linear interpolation, which is applied
to valuing ASX installment warrants with dilution effects.

For continuous-installment options, Ciurlia and Roko (2005)
analyzed the American case approximately by applying the multi-
piece exponential function (MEF) method to an integral representa-
tion of the initial premium. To check the accuracy of the MEF
approximation, they executed numerical comparisons with bench-
mark results obtained by the finite-difference method as well as a
Monte Carlo method. The MEF method has been originated by Ju
(1998) in the valuation of the standard American put option, which
generates a piecewise continuous, i.e., discontinuous optimal stop-
ping and early exercise boundaries. This discontinuity is a serious
obstacle to decision-makings of the option holder. As for the Euro-
pean case, Alobaidi et al. (2004) used an integral transform to solve
a free boundary problem due to the flexibility of continuing or stop-
ping to pay installments, obtaining asymptotic properties of an opti-
mal stopping boundary close to maturity. However, their method is
not appropriate for quantitative valuation, because the integral
transform adopted there is too special to invert it numerically. The
target of this paper is also a European continuous-installment op-
tion written on a dividend-paying asset in the setup of the standard
Black–Scholes–Merton framework, to which we apply a Laplace
transform approach; see Kimura (2007) for the American case.

This paper is organized as follows: In Section 2, on the basis of a
partial differential equation (PDE) for the values of the continuous-
installment call/put options, we derive an integral representation
for each initial premium, being expressed as a difference of the cor-
responding European vanilla value and the expected present value
of installment payments along the optimal stopping boundary. In
Section 3, applying the Laplace transform approach to the PDE,
we obtain explicit Laplace transforms of the initial premium as
well as its Greeks, which include the transformed stopping bound-
ary in a closed form. We prove that the Laplace transform of the
initial premium can be decomposed into those of the associated
vanilla option and its American compound put option. Abelian the-
orems of Laplace transforms enable us to characterize asymptotic
behaviors of the stopping boundary. In Section 4, we show some
computational results for particular cases with the aid of numerical
Laplace transform inversion. Finally, in Section 5, we conclude and
give further remarks as well as directions of future research.

2. Integral representation

Let ðStÞtP0 be the price process of the underlying asset. Assume
that ðStÞtP0 is a risk-neutralized diffusion process described by the
linear stochastic differential equation (SDE)

dSt

St
¼ ðr � dÞdt þ rdWt; t P 0; ð1Þ

where r > 0 is the risk-free rate of interest, d P 0 is the continuous
dividend rate, and r > 0 is the volatility coefficient of the asset price.
In (1), W � ðWtÞtP0 denotes a one-dimensional standard Brownian
motion process on a filtered probability space ðX; ðFtÞtP0;F;PÞ
where ðFtÞtP0 � F is the natural filtration corresponding to W and
the probability measure P is chosen so that the stock has mean rate
of return r. In addition, let q > 0 be the continuous-installment rate,
which means the holder pays an amount qdt in time dt, while the
asset itself pays a continuous dividend in the amount of dSt dt to
the holder at the same time.

Let t ðP 0Þ be the purchase time of a continuous-installment
option. Then, the initial premium V � Vðt; St; qÞ of this option is a
function of the time t, the current asset value St � S, and the
continuous-installment rate q. From the standard argument of
constructing the hedged portfolio consisting of one option and an

amount� oV
oS of the underlying asset, we see that the initial premium

V satisfies an inhomogeneous PDE

oV
ot
þ 1

2
r2S2 o2V

oS2 þ ðr � dÞS oV
oS
� rV ¼ q: ð2Þ

See Ciurlia and Roko (2005) for details. If q ¼ 0, then the homoge-
neous equation agrees with the so-called Black–Scholes–Merton
PDE.

2.1. Call case

Consider a European-style installment call option with maturity
date T and strike price K. The payoff at the maturity is given by
ðST � KÞþ, where ðxÞþ ¼maxðx;0Þ. Let c � cðt; St ; qÞ denote the va-
lue of the continuous-installment call option at time t 2 ½0; T�. In
the absence of arbitrage opportunities, the value cðt; St ; qÞ is a solu-
tion of an optimal stopping problem

cðt; St ; qÞ

¼ ess sup
sc2½t;T�

E 1fscPTge�rðT�tÞðST � KÞþ � q
r

1� e�rðsc^T�tÞ� ����Ft

h i
ð3Þ

for t 2 ½0; T�, where a ^ b ¼minfa; bg, sc is a stopping time of the fil-
tration ðFtÞtP0, and the conditional expectation is calculated under
the risk-neutral probability measure P. The random variable
s�c 2 ½t; T� is called an optimal stopping time if it gives the supremum
value of the right-hand side of (3). If q 6 0, then s�c ¼ T (a.s.), i.e., it is
optimal not to stop paying installments before the maturity.

Solving the optimal stopping problem (3) is equivalent to find-
ing the points ðt; StÞ for which termination of the contract is opti-
mal. Let D ¼ ½0; T� � ½0;þ1Þ, and S and C denote the stopping
region and continuation region, respectively. In terms of the value
function cðt; St ; qÞ, the stopping region S is defined by

S ¼ ðt; StÞ 2 D jcðt; St ; qÞ ¼ 0f g;

for which the optimal stopping time s�c satisfies

s�c ¼ inffu 2 ½t; T� j ðu; SuÞ 2 Sg:

The continuation region C is the complement of S in D, i.e.,

C ¼ ðt; StÞ 2 D jcðt; St ; qÞ > 0f g:

The boundary that separates S from C is referred to as a stopping
boundary (or a cancellation boundary), which is defined by

St ¼ inf St 2 ½0;þ1Þjcðt; St ; qÞ > 0f g; t 2 ½0; T�: ð4Þ

Since cðt; St; qÞ is nondecreasing in St , the stopping boundary
ðStÞt2½0;T� is a lower critical asset price below which it is advantageous
to terminate the option contract by stopping the payments, and it
vanishes when q 6 0, i.e., St � 0 for t 2 ½0; T�.

In the continuation region C, the call value cðt; S; qÞ (S � St for
abbreviation) is obtained by solving the inhomogeneous PDE

oc
ot
þ 1

2
r2S2 o2c

oS2 þ ðr � dÞS oc
oS
� rc ¼ q; S > St; ð5Þ

with the boundary conditions

lim
S#St

cðt; S; qÞ ¼ 0;

lim
S#St

oc
oS
¼ 0;

lim
S"1

oc
oS
<1:

������������
ð6Þ

The first (value matching) condition implies that the initial premium
is continuous across the stopping boundary, and the second (smooth
pasting) condition further implies that the slope is continuous. The
terminal condition is clearly given by

cðT; S; qÞ ¼ ðS� KÞþ: ð7Þ
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