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a b s t r a c t

We examine a contracting problem with asymmetric information in a monopoly pricing setting. Tradi-
tionally, the problem is modeled as a one-period Bayesian game, where the incomplete information about
the buyers’ preferences is handled with some subjective probability distribution. Here we suggest an iter-
ative online method to solve the problem. We show that, when the buyers behave myopically, the seller
can learn the optimal tariff by selling the product repeatedly. In a practical modification of the method,
the seller offers linear tariffs and adjusts them until optimality is reached. The adjustment can be seen as
gradient adjustment, and it can be done with limited information and so that it benefits both the seller
and the buyers. Our method uses special features of the problem and it is easily implementable.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

We consider a monopoly pricing problem where the market
consists of a seller and buyers with different preferences. The buy-
ers are sorted into two classes, and the demand behavior of each
class is specified by a utility function. The seller designs a single
price schedule as a function of quantity to maximize his profit,
from which the buyers select the quantity they wish to consume.
In economics and game theory literature this problem is known
as the nonlinear pricing problem. More broadly, such a problem
falls into the class of principal-agent games where a principal (here
a seller) proposes a contract to an agent (a buyer) whose prefer-
ences are the agent’s private information. In addition to nonlinear
pricing and monopoly pricing [12,14,21,22], other examples of
such games are optimal taxation [13], regulation [1], and the de-
sign of auctions [15]. In the literature all these games are called ad-
verse selection or mechanism design problems; [8,18] are good
textbook presentations on the topic.

An essential feature of all adverse selection problems is incom-
plete information: the principal does not know the exact values of
agents’ type parameters, although he knows their probability dis-
tributions and the functional forms of the agents’ utility functions
depending on these parameters. Hence, the problem is solved
mathematically as a one-shot Bayesian game.

In nonlinear pricing a practical approach to handle incomplete
information in an offline manner1 was suggested by Spence [21],

who noted that the buyers’ demand functions can be estimated by
offering unit prices to the buyers. Wilson [23,24] took the idea fur-
ther by formulating the problem so that it could be solved by using
the demand data that is estimated from the buyers’ responses to lin-
ear tariffs; see also Räsänen et al. [17] for one such application in
electricity markets. The Wilson’s approach may, however, require
an extensive data collection that can be rather costly; in the case
of Räsänen et al., it took three years to collect reasonable consumer
demand data to solve a three quantity, two buyer class pricing prob-
lem. In Braden and Oren [6] a Bayesian learning formulation over a
finite time horizon was studied in an optimal control fashion to esti-
mate the type for one consumer class. As the authors say, the paper
provides more insights than numbers to a rather involved problem
containing continuous random variables.

Currently, Internet is taking a vital role as an e-commerce plat-
form. Internet is also used for extensive customer data gathering
for pricing services and goods. At the same time, however, cus-
tomer privacy considerations attached to data collection matter
and should be taken into account in the analysis [9]. This fact fa-
vors development of efficient online1 pricing schemes that acquire
data incrementally rather than offline pricing methods which usu-
ally need large customer data set to be applicable. In papers deal-
ing with dynamic pricing of goods, where in addition to varying
demand also inventory considerations may count, various online
learning methods have been used to forecast the correct customer
behavior and future demand curve [11,16]. Brooks et al. [5] con-
sider adjustment of different pricing schedules, e.g., linear, two-
part, nonlinear, etc. tariffs, in nonlinear pricing setting where
monopolist offers consumers a new set of articles in each time per-
iod. One question they emphasize is that learning customer prefer-
ences takes time during which the seller earns less than the
optimal profit. In addition to OR literature, the development of
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computational algorithms for games that use limited amount of
information about the other agents’ preferences, e.g., multiagent
learning algorithms and combinatiorial auction algorithms, have
recently been under active research in AI literature, too [4,19,20].

In this paper we assume that the seller knows the number of
different buyers, but does not have knowledge on their utility func-
tions. Instead we assume that the product is sold repeatedly to
myopic buyers. By observing the realized sales the seller plans a
better pricing policy for the next period. We first present a discrete
step adjustment scheme to solve the problem in an online fashion.
Actually we come to this scheme intuitively by requiring that the
seller increases the amount to be sold a little bit in every period
and that in every such period both the seller and the buyers should
gain. It turns out that the resulting method is a steepest ascent
method. To avoid too many price changes in every iteration step
we then consider a practical modification of the method by making
use of linear tariffs. This kind of adjustment problem has not been
studied in the literature earlier; see however [7,10] where linear
tariff adjustment scheme for one buyer type was studied. This pa-
per shows that there are intuitively appealing computational
schemes for solving the problem with several buyer types, too.

The contents of the paper are as follows. In Section 2, we formu-
late the nonlinear pricing problem and study its optimality condi-
tions. We also study an illustrative example in detail. In Section 3,
we present a discrete step heuristic method and discuss its proper-
ties. It turns out that the invented method can be considered a dis-
crete step gradient adjustment scheme. In Section 4, we define and
analyze a modified method based on the use of linear tariffs. In
Section 5, we simulate numerically the performance of our meth-
od, and finally in Section 6, we offer further considerations to the
issue.

2. Model

A firm, the seller denoted by S, produces a product x, x P 0, to a
population of buyers. The seller differentiates the buyers by offer-
ing them different quantities of the product. We assume that there
are just two types of buyers in the population: a low buyer and a
high buyer denoted from now on by L and H, respectively. The buy-
ers’ utilities are quasi-linear,

Uiðx; tÞ ¼ ViðxÞ � t; i ¼ L;H; ð1Þ

where t is the price of the product and ViðxÞ is buyer i’s gross sur-
plus of consuming quantity x. The utilities are scaled so that
Við0Þ ¼ 0; i ¼ L;H. The gross surplus ViðxÞ is assumed to be twice
continuously differentiable, increasing and strictly concave, i.e.,
V 0iðxÞP 0, V 00i ðxÞ < 0, when x P 0.

The seller offers the buyers two types of quantity-price bundles,
ðxL; tLÞ and ðxH; tHÞ, and gets a total profit

pðxL; xH; tL; tHÞ ¼ pLðtL � cðxLÞÞ þ pHðtH � cðxHÞÞ; ð2Þ

where pi is the relative number of buyers i in the population, and
cðxÞ is the seller’s cost of producing quantity x. Without loss of gen-
erality, we assume that there is only one L buyer and one H buyer
with weights pL and pH , respectively. Furthermore, we assume that
the production cost is of the form cðxÞ ¼ cx, where c P 0 is a con-
stant. We note, however, that the production cost could be convex
as well and this would result only in minor changes in the rest of
the paper.

In the market the buyers self-select the bundle they wish to
consume. In maximizing his profit, the seller therefore faces two
kinds of constraints: individual rationality (IR) constraints

Uiðxi; tiÞ ¼ ViðxiÞ � ti P Uið0;0Þ ¼ 0; i ¼ L;H; ð3Þ

and incentive compatibility (IC) constraints

Uiðxi; tiÞ ¼ ViðxiÞ � ti P ViðxjÞ � tj ¼ Uiðxj; tjÞ; j – i: ð4Þ

The IR constraints state that a buyer should get positive utility
when choosing the bundle intended for him. The IC constraints
let the buyers self-select the bundle for them; the buyers prefer
their own bundle the most. Now, the seller’s problem is maximiza-
tion of pðxL; xH; tL; tHÞ with respect to the constraint equations (3)
and (4).

2.1. Necessary and sufficient optimality conditions

We derive first-order conditions to the problem by making a
common assumption used in literature, which states that the buy-
ers’ utility functions can be sorted.

Assumption 1. V 0HðxÞ > V 0LðxÞ; 8x P 0:

This assumption is called the single-crossing property and it has
two major implications. First, the optimal quantities are increasing
in buyer type, x�H P x�L , where from now on * refers to the optimal-
ity. Second, the optimal prices are

t�L ¼ VLðx�LÞ; ð5Þ
t�H ¼ t�L þ VHðx�HÞ � VHðx�LÞ: ð6Þ

These results are derived in Spence [22]. Using these results, we can
simplify the seller’s problem to

max
xL ;xH ;tL ;tH

pðxL; xH; tL; tHÞ ¼ pLðtL � cxLÞ þ pHðtH � cxHÞ

s:t: tL ¼ VLðxLÞ;

tH ¼ tL þ VHðxHÞ � VHðxLÞ;

xH P xL P 0:

ð7Þ

Assumption 2. There is xE
i > 0 so that V 0iðxE

i Þ ¼ c, i ¼ L;H.

This assumption rules out the possibility that selling nothing to
both buyers is optimal for the problem. If buyer i was alone in the
market, he would be served with the amount xE

i , which is called the
first-best solution. In this case, when the cost is linear and Vi is
strictly concave, this amount is unique.

Let us define fLðxÞ ¼ pLðVLðxÞ � cxÞ � pHðVHðxÞ � VLðxÞÞ and
fHðxÞ ¼ pHðVHðxÞ � cxÞ. Then substituting the equality constraints
in (7) into the objective function, we get pðxL; xH; tL; tHÞ ¼
fLðxLÞ þ fHðxHÞ. Hence, forgetting the constraints xH P xL P 0 for a
while, we get the necessary conditions of (7) for a solution
0 < x�L 6 x�H ,

f 0Hðx�HÞ ¼ pHðV
0
Hðx�HÞ � cÞ ¼ 0; ð8Þ

f 0Lðx�LÞ ¼ pLðV
0
Lðx�LÞ � cÞ � pHðV

0
Hðx�LÞ � V 0Lðx�LÞÞ ¼ 0: ð9Þ

Assumptions 1 and 2 imply that 0 < xE
L < xE

H <1, and that
f 0LðxÞ < 0, for all x P xE

L . Thus for a solution of (9) we have
0 6 x�L < xE

L . By (8), x�H ¼ xE
H , hence it also holds that x�L < x�H . But

(9) may not have solution at all, since f 0LðxÞ can be strictly negative
for all x 2 ½0; xE

L �. Thus, the problem solution is either to serve both
buyers or to exclude the low type and serve only the high type.
Which case will happen depends on the buyers’ utilities and
weights pL and pH . The latter case will happen if pL is small, or if
the low type values the product considerably less than the high
type. If this is the case, the solution is given by x�H ¼ xE

H ,
t�H ¼ VHðx�HÞ, and x�L ¼ t�L ¼ 0. In this paper, we shall assume that it
is optimal to serve both buyers. Therefore, we make the following
assumption.
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